Software License Advisory

This document supports software that is proprietary to Honeywell GmbH, Honeywell Control Systems Ltd. and/or to third party software vendors. Before software delivery, the end user must execute a software license agreement that governs software use. Software license agreement provisions include limiting use of the software to equipment furnished, limiting copying, preserving confidentiality, and prohibiting transfer to a third party. Disclosure, use, or reproduction beyond that permitted in the license agreement is prohibited.

Trademark Information

CentraLine and 'close to you' are trademarks of Honeywell Inc.

BACnet and ASHRAE are registered trademarks of American Society of Heating, Refrigerating and Air-Conditioning Engineers. Microsoft and Windows are registered trademarks, and Windows Internet Explorer are trademarks of Microsoft Corporation. Java and other Java-based names are trademarks of Sun Microsystems Inc. and refer to Sun's family of Java-branded technologies. Mozilla and Firefox are trademarks of the Mozilla Foundation. Echelon, LON, LonMark, LonTalk, and LonWorks are registered trademarks of Echelon Corporation.

Tridium, JACE, Niagara Framework, NiagaraAX Framework, Sedona Framework and Vykon are registered trademarks, and Workbench, WorkPlaceAX, and AXSupervisor are trademarks of Tridium Inc. All other product names and services mentioned in this publication that is known to be trademarks, registered trademarks, or service marks are the property of their respective owners.
SYSTEM REQUIREMENTS

Niagara

Niagara 4.4.xx and higher.

Products and OS Numbers

The C-Bus Driver will be working with CentraLine Products only. For detailed information on the applicable controllers and BNA (CLIF) versions including their OS Numbers and licenses, please download the corresponding, product data, software release bulletin and/or the compatibility matrix at:

Product Data

Software Release Bulletin
https://www.centraline.com/partnerweb/index.php?id=847&route=article%2Findex&directory_id=47&direct_link=1

Compatibility Matrix
https://clfaq.ge51.honeywell.de/?action=artikel&cat=70&id=1616&artlang=en

Licenses and Point Handling

C-Bus points are included in the Global Point Capacity.

Subscriptions and Bus Performance

When having a license allowing only a limited number of points and you are deleting points, the free number points are not available instantly. To make the free number of points available again, please restart the station.

The bus performance may be reduced to an inadequate level if too many point subscriptions are executed, e.g. when applying large trending scenarios. To increase the bus performance again to an adequate level, increase the baud rate to values of 38400 or higher.

INSTALLATION

The C-Bus driver will be installed with the NX setup by default.

Procedure

1. Unzip the CentraLine NX software to the desired location on your hard disk.

2. Expand the CentraLine NX installation folder.

3. Double-click the setup.exe file for a Win 32-Bit operation system or the setup_x64.exe file for a Win 64-Bit operating system.

 RESULT: The CentraLine NX Installation Wizard starts.

4. Click Next > and follow the installation instructions.

 RESULT: After the installation is finished, the CentraLine NX software has been installed according to your selected settings during the setup.

5. Copy the clCBus.jar file to the C:\CentraLine\CentraLineNX-x.x.xx.xx\modules folder.

CLIF Configurator Tool Download

For configuration purposes of the CLIF C-Bus (BNA) device, you can download the tool at:

START CENTRALINE NX

Procedure

1. In the Windows Start menu, right-click on COACH NX, and then click Run as administrator in the context menu.

2. Click Yes in the User Account Control dialog box.

RESULT: The CentraLine NX main window displays.

Alternate Usage of Different CentraLine NX Versions on Same PC

If you have different CentraLine NX versions installed on your PC and you want to use them alternately, each time before you start the CentraLine NX software, you must install its dedicated platform daemon.

This is necessary in order to make sure that all necessary services are properly running when using the software.
NOTE: For ARENA NX / COACH NX 4.4.xx which will be installed via setup, the dedicated platform daemon is automatically installed and the corresponding services are running, as long as you do not start another ARENA NX / COACH NX version.

Example: You worked with ARENA NX / COACH NX 4.4.76 and you want to use the previous COACH NX 4.3.58 version. Prior to software start, click the Install Platform Daemon entry in the CentraLine COACH NX 4.3.58 program group.

OPEN PLATFORM

Procedure 1. In the Nav side bar, right-click on My Host and then click Open Platform in the context menu.

RESULT: The Connect dialog box displays.

2. In Type, select the secure Platform SSL Connection, and then click OK.

RESULT: If the following message box is displayed, confirm by clicking Accept.
RESULT: If the Authentication dialog box is displayed.

3. In Username, enter your Windows account name.

4. In Password, enter your Windows account password.

 IMPORTANT

 To connect successfully, you must have admin rights as Windows user.

5. Click OK.

 RESULT: You will be connected to the platform and the utilities of the platform are displayed on the Platform pane on the right.
CREATE STATION

Procedure

1. From the Tools menu, select New Station.

RESULT: The New Station Wizard displays.
2. In **Station Name**, enter a name.

3. Click **Next** button.

4. In **Password for admin User** and in **Confirm Password for admin User**, enter the administrator password.

5. Under When “Finish” is pressed, save the station and, check any of the following options:
 - open it in user home
 creates the station in the **user home** folder
• copy it to secure platform for "localhost" with Station Copier
 copies the station using the station copier function to the localhost folder (recommended)
• close the wizard
 creates the station and closes the station wizard.

6. Click Finish button.
RESULT: The *Loading Module Information* message box displays.

RESULT: Then the *Transferring station ...* dialog box displays.

7. Check whether you want to start the station after copy immediately and once, or whether you want to start the station immediately after copy and automatically every time after platform daemon start.
8. Click Finish button.

RESULT: In this example, when the station copier function was used, the copy (transfer) process is successfully completed indicated by the corresponding messages.

9. Click Close button.

RESULT: The station will be started.

START AND CONNECT TO STATION

Procedure

1. On the *Platform* pane on the right, double-click on the *Application Director* utility.

RESULT: Under *Connected to local host*, all stations are displayed.

2. In the list, select the station, and then click *Start* button on the right.
RESULT: The station is started as indicated by the status ‘Running’ in the Status column.

3. In the Nav side bar, right-click on the My Host folder, and then click Open Station in the context menu.

RESULT: The Connect dialog box displays.

4. Click OK.

RESULT: The Authentication dialog box displays.
5. If not already done, enter **Username** and **Password** and check **Remember these credentials**.

6. Click **OK**.

RESULT: The station will be opened. On the **Station** pane on the right the components of the station are displayed:

- Alarm
- Config
- Files
- Spy
- Hierarchy
- History

At the bottom, the **Summary** pane displays general properties and its settings (Station Name, Host, etc.) of the station.
CREATE C-BUS NETWORK

Procedure

1. In the Nav side bar, expand the Station folder, and then click on Drivers.

2. On the right pane, click New.

 RESULT: The New dialog box displays.

3. In Type to Add select C Bus Network.
4. Click **OK**.

RESULT: The **New** dialog box is displayed.

5. Click **OK**.

RESULT: The C-Bus network is created and added to the Driver Manager.

6. Display the property sheet for the C-Bus network by right-clicking **CBusNetwork** in the **Nav** tree, selecting **Views**, and then selecting **Property Sheet** in the context menu.

RESULT: The C-Bus network properties are displayed on the right pane.
7. Under **BNA IP-Address**, enter the IP address for the CLIF device in the **IP Address** field.

8. Click **Save** button.

RESULT: The C-Bus network properties are updated. The **Health** and the **Status** fields show ‘Ok’ indicating that the C-Bus network is properly working.
C-BUS Channel Configuration Settings

By default, only C-Bus Channel 1 is enabled, and C-Bus Channel 2 is disabled. When using a BNA with 2 channels, you must enable C-Bus Channel 2 explicitly. You can enable or disable each of the two C-Bus channels (1 and 2). For each C-Bus Channel, you can change the baud rate. When changing the baud rate, you must manually restart the BNA if the system is running.

Ping C-Bus Network

Purpose
To instantly establish communication between C-Bus Network and CentraLine NX.

Procedure
1. In the Nav tree on the left, right-click **CBus Network**, then click **Actions**, and then click **Ping** in the context menu.

2. Check if the communication has been established (Health is Ok) on the C-Bus Properties page.
Send Time Synchronization

Purpose
To synchronize the time among all controllers of the C-Bus network according to the time of the master controller.

By default, an automatic time synchronization is done on daily basis at 4:00 A.M.

Procedure
1. In the Nav tree on the left, right-click **CBus Network**, then click **Actions**, and then click **Send Time Synchronization** in the context menu.

RESULT: The C-Bus properties are displayed.

Disable Time Synchronization

Purpose
To disable time synchronization in case multiple supervisors are working on the C-Bus in parallel.

Procedure
1. In the Nav tree on the left, right-click **CBus Network**, then click **View**, and then click **Property Sheet** in the context menu.

RESULT: The C-Bus properties are displayed.
2. Set the **Enable Auto Time Synchronization** property to ‘false’.

![Enable Auto Time Synchronization](false)

ADD CONTROLLER TO STATION

Procedure

1. In the **Nav** side bar, expand the **Station** folder, and then double-click on **CBusNetwork**.

![CBusNetwork](image)

2. On the right **Database** pane, click **Discover**.

RESULT: In the upper **Discovered** area, the found C-Bus controllers are displayed.
3. Select the controller, and then click **Add** in the buttons bar at the bottom.

 RESULT: The **Add** dialog box displays.

4. Click **OK**.

 RESULT: The controller is added to the database as indicated in the **Database** area at the bottom.

Software starts the file loading process which loads the following information:

- engineering units
- point descriptors
- IO characteristics
- alarm texts
- schedules
- parameters
The loading progress is indicated in the **File Loading** column.

<table>
<thead>
<tr>
<th>Controller Status</th>
<th>Communication Status</th>
<th>File Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>OK</td>
<td>Loading Digital EngUnits</td>
<td>In Progress 3.2</td>
</tr>
</tbody>
</table>

IMPORTANT!
The file loading takes some time. Please do not interrupt the progress by starting other actions until successful file loading is indicated as “Completed” in the **File Loading** column.

<table>
<thead>
<tr>
<th>Controller Type</th>
<th>Program Name</th>
<th>Controller Status</th>
<th>Communication Status</th>
<th>File Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>XL800 / LION</td>
<td>XL_800</td>
<td>OK</td>
<td>Idle</td>
<td>Completed</td>
</tr>
</tbody>
</table>

RESULT: On the right pane, the device properties are displayed.

In the **Nav** tree, the controller is added to the station under the C-Bus network. On the right pane, the device properties are displayed.

5. To add controller objects to the station such as datapoints, schedules etc. you can use the items below the controller icon in the **Nav** tree (see "Add Controller Objects to the Station" section).
Ping Controller

Purpose
To instantly establish communication between Controller and CentraLine NX.

Procedure
1. In the Nav tree on the left, right-click Controller, then click Actions, and then click Ping in the context menu.
2. Check if the communication has been established indicated by 'Health is Ok' on the controller's properties page.

Discover Objects of Controller and Add them to Station

Purpose
In the following, the discovery of all objects in the connected controller and, as an example, the addition of datapoints to the station is described. This procedure is done online with the connected controller.

Procedure
1. In the Nav tree on the left, expand the Station folder and navigate to the controller.
2. Double-click the folder which you want to add objects to, e.g. the Points folder if you want to discover and add datapoints, and then click the Discover button.
RESULT: All objects, in this case datapoints of the controller will be listed in the upper **Discovered** pane.
3. Select the datapoints you want to add to the station. Multi-selection using the SHIFT of STRG key is possible.

4. Click **Add** button at the bottom of the pane.

RESULT: The Add dialog box displays.
5. Click OK. Do not modify any settings of the datapoints, these will be reset based on a pre-defined mechanism while adding to the database.

RESULT: The selected datapoints are added to the station. They are displayed twice, in the lower Database pane and in the Points Folder in the Nav tree.
6. It is recommended to create a structure for arrangement of the different datapoint types by clicking the **New Folder** button.

7. After you are finished with the creation of the structure, move the datapoints to the corresponding folders.
VIEW / MODIFY DATAPoint PROPERTIES

The properties of a datapoint vary dependent on the datapoint type. The following datapoint types are available in CentraLine NX:

- AI (analog input)
- AO (analog output)
- PA (pseudo analog)
- DI (binary input)
- DO (binary output)
- PD (pseudo digital)
- TOT (totalizer)
- GA (global analog)
- GD (global digital)

For detailed descriptions of the properties of a particular datapoint, please refer to the "C-Bus Datapoint Properties Descriptions" section.

Locations of Value Modifications

Datapoint properties can be modified on three different locations:

- in Niagara
- in the controller (B-Port)
- at the module ("present" value only)

NOTE: In the following, the user-applicable steps in Niagara for modifying any datapoint property (e.g. alarm delay) and in particular the present value is described (see View/Modify Datapoint Properties section).

In addition, the responsive behavior (results) in Niagara when changing the "present" value in the controller or at the module is described (see "Present" Value Modification Model section).

View/Modify Datapoint Properties

The following procedure gives a short and general overview on how to view and modify the properties of a datapoint.

Procedure

1. To view/edit the properties of a datapoint, open the Points folder in the Nav tree.

2. Open the datapoint, and then open the Proxy Ext folder.
3. Double-click on the **Config** icon.
RESULT: On the right pane, the properties of the datapoint are displayed.

![Property Sheet](Image)

4. To change a datapoint property, enter the new value in the field. The field indicator is highlighted in red.

 ![Time to Close](Image)

 or, select an option from the drop-down listbox. The field indicator is highlighted in red.

5. To save the changed datapoint property, click the **Save** button at the bottom. This writes the value to the controller.

"**Present** Value Modification Model" When the present value of a datapoint is modified, the manual actions done by the user and the automatic actions performed by the software are based on certain mechanisms that involve the following datapoint properties:

- Status
- Read Value
- Write Value
- Out
- Priority arrays In1 .. In16
• Operating Mode

The present value can be modified on three different locations:
• in Niagara
• in the controller (B-Port)
• on the panel / Lon module

Modification of present value in Niagara
In Niagara you can change the present value in one of the following ways:

A) Priority array usage:

a. Choose a priority within the range of In1 .. In7.

b. Uncheck null if this is checked by default, and then enter the value

c. Click Save button.

RESULT: The value is written to the controller as shown in the Write Value field. When the controller has read the value it is shown in the Read Value field.

The point is set from Auto to Manual operating mode and the Operating Mode field shows ‘Manual’. In the Status field, the status ‘overridden’ is displayed.

The Out field shows the current value.

NOTE: Priorities In1 .. In8 must be NULL if the point should be in Auto operating mode. Priorities 9 .. 16 are always written to Auto operating mode. A value entered there is taken, e.g. if no control strategy is available.
B) **Actions** context menu usage:
The **Actions** context menu provides the following commands:

- **Emergency Override**
 Overwrites the present value with the highest priority (In1) and sets the point into manual operating mode

- **Emergency Auto**
 Sets the point from emergency auto into Automatic operating mode
– Override
 Overwrites the present value with the priority In8 and sets the point into manual operating mode

– Auto
 Sets the point from Override into Automatic operating mode

– Set
 Sets the fallback value

– Read Point Attributes
 Reads all point attributes instantly from the controller

a. Right-click the datapoint, click **Actions**, and then, e.g. click **Override** in the context menu.

![Override dialog box](image)

b. In the **Override** menu, enter the value.

c. From the **Override Duration** drop-down listbox, select the duration.

![Override dialog box](image)

d. Click **OK** button.

RESULT: The value is written to the controller. The Auto action uses the **In8** priority level and the entered value is displayed there.

 The same process steps are executed and the same fields are used for display as described in method A (Priority array usage) described above.

NOTE: If any of the In1 .. In7 priority levels are used, then the Override action using priority level In8 has no effect due its lower priority.
Modification of present value in controller (B-port) - Results in Niagara

In the controller, the present value is changed in any one of the following cases:

a. The controller is in Auto operating mode and the present value is updated by the control strategy or the time program.

RESULT: In Niagara, the Out field shows the current value. No changes in the priority array.

b. The controller is in Auto operating mode and you set the controller into Manual operating mode by overwriting the present value.
RESULT: In Niagara, the value is shown in the In8 priority level. If a value is set in any of the 1 .. In7 priority levels, then the manual value in the controller will be overwritten instantly with the corresponding value.

c. The controller is in Manual operating mode and you set the controller into Auto operating mode.

RESULT: In Niagara, the In8 priority level is set to NULL. If a value is set in any of the 1 .. In7 priority levels, then the manual value in the controller will be overwritten instantly with the corresponding value.

Modification of present value by manual override switch on panel/Lon module – Results in Niagara

When operating the manual override switch on a panel or Lon module, the modified present value is shown in priority level In1. The Override Status Flag field shows ‘Online’.

NOTE: The action ‘Emergency Override’ will have no effect as long as the manual override switch is active.

Procedures

Modify Datapoint Properties (Any)

The following procedure gives a short and general overview on how to view and modify the property of a datapoint.

Procedure

1. Open the Points folder in the Nav tree.

 ![Points folder in Niagara](image)

 - N CtgLv
 - N HtgLv
 - N MoImpr
 - B Alarm_reset
 - B FzStat
 - B RaFanStatus
 - B Fan_Alarm
 - B RaFan
 - B ResetSwitchStatus
 - N AvgrmRoomTemp
 - N DaTempSP
 - N DamprSignal
 - E AHU_1_enable
 - E AlarmSuppress
 - E EXECUTING_STOPPED

2. Open the datapoint, and then open the Proxy Ext folder.

 ![Proxy Ext folder](image)

3. Double-click on the Config icon.
RESULT: On the right pane, the properties of the datapoint are displayed.

4. To change a datapoint property, enter the new value in the field. The field indicator is highlighted in red.

![Time to Close](image)

or, select an option from the drop-down listbox. The field indicator is highlighted in red.

5. To save the changed datapoint property, click the **Save** button at the bottom. This writes the value to the controller.

6. To upload the current properties values from the controller, click the **Refresh** button at the bottom. This overwrites all values in Niagara if these values are different to the values in the controller.

Setting Datapoint into Manual Mode (Manual Override)

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Sets the datapoint into Manual operating mode and overwrites the present value with a defined value entered manually. This command is executed on priority level In8.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procedure</td>
<td>1. In the Nav tree on the left, expand the Station folder and browse to the Points folder.</td>
</tr>
</tbody>
</table>
2. Right-click the datapoint, click **Actions** and then click **Override** in the context menu.

RESULT: The **Override** dialog box displays.

3. In the **Override Value** field, enter the value.

4. From the **Override Duration** drop-down listbox, select the duration.

5. Click the **OK** button.

RESULT: On the Properties tab, the manual value change is indicated as follows:
The value is executed in the **In8** field, written in the **Write Value** field and read in the **Read Value** field. In the **Status** field, the status ‘overridden’ is displayed. The **Out** field shows the manual value as the current value. The **Operating Mode** field shows the mode ‘Manual’.
Property Sheet

MaDmpr (C Bus Numeric Writable)
- **Units**: Pct, precision=0 Pct, min=-inf Pct, max=inf Pct

Proxy Ext (C Bus Proxy Ext)
- **Status**: [overridden]
- **Enabled**: true

Config (C Bus Point Config)
- **Operating Mode**: Manual
- **Technical Address**: 2/1/3
- **Point Subtype**: Continuous
- **Descriptor**: [9] Mix Air Dampr
- **Unit**: 5% Pct [0]
- **Characteristic**: [254] LINEAR GRAPH
- **Time to Open**: 120.00
- **Time to Close**: 120.00
- **Suppress Alarm**: Enabled
- **Trend Logging**: Disabled
- **Trend Hysteresis**: 1.00
- **Trend Cycle Counter**: 0
- **Override Status Flag**: Automatic
- **No Response Flag**: Online
- **Safety Position**: 0°

Out
- 25 Pct [overridden] @ 0

In
- ln1: [null]
- ln2: [null]
- ln3: [null]
- ln4: [null]
- ln5: [null]
- ln6: [null]
Setting Datapoint from Override Mode into Auto Mode

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Sets a datapoint that is in override (manual) mode into Automatic mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procedure</td>
<td>1. In the Nav tree on the left, expand the Station folder and browse to the Points folder.</td>
</tr>
<tr>
<td></td>
<td>2. Right-click the datapoint, click Actions and then click Auto in the context menu.</td>
</tr>
</tbody>
</table>

RESULT: On the Properties tab, the manual value change is indicated as follows:

The In8 field is emptied. The Write Value field and the Read Value field is reset. In the Status field, the status ‘Ok’ is displayed. The Operating Mode field shows the mode ‘Auto’.
Property Sheet

MaDmpr (C Bus Numeric Writable)

- **Facets**
 - units: Pct
 - precision: 0
 - Pct.min: inf
 - Pct.max: inf

Proxy Ext (C Bus Proxy Ext)

- **Status** (OK)
- **Fault Cause**
- **Enabled** (true)
- **Device Facets**
- **Conversion**
- **Tuning Policy Name** (Default Policy)
- **Read Value** (0.00)
- **Write Value** (-null)
- **Poll Frequency** (Normal)
- **Point Name** (MaDmpr)
- **Point Type** (Analog Output)
- **Point Index** (2)

Config (C Bus Point Config)

- **Operating Mode** (Auto)
- **Technical Address** (2/1/3)
- **Point Subtype** (Continuous)
- **Descriptor** ([9] Mix Air Dampr)
- **Unit** (54 Pct [0])
- **Characteristic** ([254] LINEAR GRAPH)
- **Time to Open** (120.00)
- **Time to Close** (120.00)
- **Suppress Alarm** (Enabled)
- **Trend Logging** (Disabled)
- **Trend Hysteresis** (1.00)
- **Trend Cycle Counter** (0)
- **Override Status Flag** (Automatic)
- **No Response Flag** (Online)
- **Safety Position** (0%)
Setting Datapoint into Manual Mode with highest Priority (Emergency Override)

Purpose
Sets the datapoint into manual operating mode and overwrites the present value with a defined value entered manually. This command is executed on priority level In1.

Procedure
1. In the Nav tree on the left, expand the Station folder and browse to the Points folder.
2. Right-click the datapoint, click Actions and then click Emergency Override in the context menu.

RESULT: The Emergency dialog box displays.

3. Enter the value.

RESULT: On the Properties tab, the manual value change is indicated as follows:

The value is executed in the In1 field, written in the Write Value field and read in the Read Value field. In the Status field, the status 'overridden' is displayed. The Out field shows the manual value as the current value. The Operating Mode field shows the mode 'Manual'.
Setting Datapoint from Emergency Override into Emergency Auto Mode

Purpose
Sets a datapoint that is in emergency override mode into Automatic mode.
Procedure

1. In the Nav tree on the left, expand the Station folder and browse to the Points folder.

2. Right-click the datapoint, click Actions and then click Emergency Auto in the context menu.

RESULT: On the Properties tab, the manual value change is indicated as follows:

- The In1 field is emptied.
- The Write Value field and the Read Value field is reset.
- In the Status field, the status ‘Ok’ is displayed.
- The Operating Mode field shows the mode ‘Auto’.
Set Datapoint Value

Purpose
Sets the fallback value of the datapoint. The fallback value of a datapoint defines the value that will be written to the present value if the priority array is empty which
means that no other value is present in the priority list In1 .. In 16. The relinquish default value allows starting up a control system with a defined status/value.

Procedure

1. In the *Nav tree* on the left, expand the *Station* folder and browse to the Points folder.

2. Right-click the datapoint, click *Actions* and then click *Set* in the context menu.

RESULT: The Set dialog box displays.

3. Enter the fallback value.

RESULT: The *Fallback* field and the *Out* field are updated with the defined value.

4. Click OK.
Read Datapoint Attributes

Purpose
Reads all point attributes instantly from the controller without waiting for subscribe process updates.

Procedure
1. In the Nav tree on the left, expand the Station folder and browse to the Points folder.
2. Right-click the datapoint, click Actions and then click Read Point Attributes in the context menu.

RESULT: All datapoint properties are updated.

Application Change and Point Handling

If a changed application is downloaded from CARE into the controller, changes result in the following:

- The alarm message ‘New Application loaded’ appears in the Open Alarm Source view.
- If only texts are modified, nothing must be done.
- If datapoints are added, deleted or renamed, you must discover the points again for the controller.
• Modified points will be marked as 'Fault' in the database and must be matched again after their discovery.

NOTE: It is not allowed and not supported having duplicate points in the database since this will result to a malfunction of the original points.

Match Point Indexes after Application Download

In case an application was downloaded into a XL5000 controller, the point indexes may change due to points added, deleted or renamed.

Procedure

1. Discover the points to get an updated status.
2. To update all the points in one shot, select all the datapoints in the *Discovered* pane and then press the *Match By Name* button.

RESULT: The points will be matched.

NOTE: After matching the points, it could take some time until the status is updated since to the subscription mechanism is executed in the
background. Please wait until the fault cause is updated and the color has changed. You will get no further notification about the update except the color change.
C-BUS DATAPoint Properties Descriptions

Analog Input Point

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><Datapoint Name></td>
<td>(C-Bus Numeric Writable)
(maximum of 18 alphanumeric characters) assigned to a point for operator use in locating and commanding the point. Examples: Rmtempf1 and FlotempG/fl. The technical address and the descriptor further define the point. This name must be unique within a controller. User Addresses must include one non-digit character and cannot include Tabs, double quotes, ?, *, or space characters. All other ASCII characters are allowable (A-Z, 0-9, +, -, _ etc). For example, 12A is a valid user address, but 12 is not.</td>
</tr>
<tr>
<td>Facets</td>
<td>Engineering units and state texts definition</td>
</tr>
<tr>
<td>Proxy Ext</td>
<td>The Proxy Extensions area shows standard Niagara functions. Only a few of them are used by C-Bus points and they are described in the following. For all unused Niagara properties, please refer to the detailed Niagara BACnet documentation.</td>
</tr>
<tr>
<td>Read Value</td>
<td>(read only) Last value read from the device, expressed in device facets.</td>
</tr>
<tr>
<td>Write Value</td>
<td>(read only) Applies if writable point only. Last value written, using device facets.</td>
</tr>
</tbody>
</table>
Config

Shows the CARE C-Bus datapoint properties

Operating Mode
Status of point: Auto or Manual

Technical Address
Internal six-digit number that defines and locates a point in the system. The technical address is composed of three pairs representing controller number (0-30), module number (1-16), and terminal number (1-12). Example: 010310 meaning Controller 1, Module 3, terminal 10. Operators use the User Address to refer to points.

Descriptor
Supplemental point information (maximum of 32 characters). Each Excel Controller has a unique set of descriptors (64 for Ver. 1.2 Controllers; 255 for Ver 1.3 and greater Controllers) that can be assigned to its user addresses to further describe them. Example: user address "Rmtempfl1" can have a descriptor of "Heating circuit, West wing" to help define its location.

Last Change
Last change of datapoint properties

High Alarm Limit
High (mNX) and low (min) limits for point value. Limit values must be between the limits for the associated Characteristics. Limit values must also maintain the following relationship:

\[\text{High Alarm} \geq \text{High Warning} > \text{Low Warning} \geq \text{Low Alarm} \]

If you change the Characteristics assignment, the High limits default to the maximum characteristic value (if...
larger than the new mNX) and the Low limits default to the minimum characteristic value (if smaller than the new min). The limits change only if they are outside the range of the new characteristic.

Unit
Engineering units with ID, unit, and format.

Characteristic
Input and output characteristics of the associated sensor.

Sensor Offset
Sensor offset value. It can be set to 0.

IMPORTANT
When controller OS 2.06.00 – 2.06.04 has been chosen, note the following restrictions and malfunctions:

Smart I/O modules
The sensor offset value entered here, is not processed by the Smart I/O module. To assure proper working, enter the sensor offset in the network tree for the UCPT.

Alarm Status
Alarm statuses can be normal or alarm

Suppress Alarm
Whether or not software should suppress alarm messages for changes in Fixed Mode and exceeding the alarm and warning limits.

Alarm Text
Alarm text that displays on point alarm.

Alarm Severity
Alarm type: critical or non-critical

Alarm Delay
How long (0 through 3600 seconds) an alarm condition must exist before software generates an alarm.

Alarm Hysteresis
Available for controller OS Ver. greater than 1.5. This value is the amount that an analog point must change before software reports an alarm or return-to-normal. Value range is 0 or x to y where x is determined by the engineering unit decimal position and y is determined by the difference of the high warning limit - low warning.

<table>
<thead>
<tr>
<th>Engineering Unit</th>
<th>Decimal Position</th>
<th>Min. Value (x)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Diff: = high warning limit - low warning.

For example, if the analog point has the following values:

- engineering unit = Degrees with one decimal point
- high alarm limit = 85.0
- high warning limit = 82.0
- low warning limit = 68.0
- low alarm limit = 65.0

Diff = 82.0 - 68.0 = 14.0

Therefore, the valid range is .01 to 14.
Default varies between 1 and 5 depending on schematic element. If the value is zero, fixed hysteresis applies.

Trend Logging
Indicates if trend logging in the controller is Enabled or Disabled.

Trend Hysteresis
Available for controller OS Ver. greater than 1.5. The value that the point must change (negative or positive) before software writes it to the trend buffer. Valid range is 0 or x to 100,000,000 (selected by entering 999999999).
The value of x is determined by the engineering unit of the point as follows:

<table>
<thead>
<tr>
<th>Engineering Unit</th>
<th>Decimal Position</th>
<th>Min. Value (x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1.0</td>
</tr>
<tr>
<td>1</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>.001</td>
<td></td>
</tr>
</tbody>
</table>

If the value is 0, the trend behaves as in OS Ver. lower than 1.5 and is as follows:

- If value is greater than 20, the change must be at least 1 percent.
- If the value is less than 20, the change must be at least .2 units.

Default is 0 for points that are not part of an element. To lessen or turn off the transmission of trend data, assign a high number to this value or assign a value to the Trend Cycle field. The Trend Cycle value takes precedence over the Trend Hysteresis value. Software sends trend data based on either hysteresis value or time, not both.

Trend Cycle Counter

Available for controller OS greater than Ver. 2.03. This value is similar to the Trend Hysteresis value, but is based on time. The range is 0 to 65535 minutes.

- A value of 0 disables time-based trending.
- Any value greater than 0 enables time-based trending.

Time-based trending takes precedence over Trend Hysteresis value.

Software sends trend data based on either hysteresis value or time, not both.

No Response Flag

Shows whether the I/O module, the point is assigned to, communicates with the controller or not:

- Communication is established = online
- Communication is interrupted = not online
<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>In1 … In16</td>
<td>Int1 .. In8 allow overriding the value manually. In1 shows the value if the point’s value is overridden via manual override switch on a module or emergency override.</td>
</tr>
<tr>
<td>Fallback</td>
<td>(not applicable)</td>
</tr>
<tr>
<td>Override Expiration</td>
<td>When the override action is automatically set to "auto" upon expiration of the override period.</td>
</tr>
</tbody>
</table>
Analog Output Point

Datapoint Name
(C-Bus Numeric Writable)
(maximum of 18 alphanumeric characters) assigned to a point for operator use in locating and commanding the point. Examples: Rmtempfl1 and FlotempG/fl. The technical address and the descriptor further define the point. This name must be unique within a controller. User Addresses must include one non-digit character and cannot include Tabs, double quotes, ?, *, or space characters. All other ASCII characters are allowable (A-Z, 0-9, +, -, _, etc.). For example, 12A is a valid user address, but 12 is not.

Facets
Engineering units and state texts definition

Proxy Ext
The Proxy Extensions area shows standard Niagara functions. Only a few of them are used by C-Bus points and they are described in the following. For all unused Niagara properties, please refer to the detailed Niagara BACnet documentation.

Read Value
(read only) Last value read from the device, expressed in device facets.

Write Value
(read only) Applies if writable point only. Last value written, using device facets.
Config

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Config</td>
<td>Shows the CARE C-Bus datapoint properties</td>
</tr>
<tr>
<td>Operating Mode</td>
<td>Status of point: Auto or Manual</td>
</tr>
<tr>
<td>Technical Address</td>
<td>Internal six-digit number that defines and locates a point in the system.</td>
</tr>
<tr>
<td></td>
<td>The technical address is composed of three pairs representing controller number (0-30), module number (1-16), and terminal number (1-12). Example: 010310 meaning Controller 1, Module 3, terminal 10. Operators use the User Address to refer to points.</td>
</tr>
<tr>
<td>Descriptor</td>
<td>Supplemental point information (maximum of 32 characters). Each Excel Controller has a unique set of descriptors (64 for Ver. 1.2 Controllers; 255 for Ver 1.3 and greater Controllers) that can be assigned to its user addresses to further describe them. Example: user address “Rmtempfl1” can have a descriptor of “Heating circuit, West wing” to help define its location.</td>
</tr>
<tr>
<td>Unit</td>
<td>Engineering units with ID, unit, and format.</td>
</tr>
<tr>
<td>Characteristic</td>
<td>Input and output characteristics of the associated sensor.</td>
</tr>
<tr>
<td>Time to Open</td>
<td>Time (integer, 0 through 999 seconds) required for the actuator of a three-position output to motor from the closed to the open state.</td>
</tr>
<tr>
<td>Time to Close</td>
<td>Time (integer, 0 through 999 seconds) required for the actuator of a three-position output to motor from the open to the closed state.</td>
</tr>
<tr>
<td>Suppress Alarm</td>
<td>Whether or not software should suppress alarm messages for changes in Fixed Mode and exceeding the alarm and warning limits.</td>
</tr>
<tr>
<td>Trend Logging</td>
<td>Indicates if trend logging in the controller is Enabled or Disabled.</td>
</tr>
<tr>
<td>Trend Hysteresis</td>
<td>Available for controller OS Ver. greater than 1.5. The value that the point must change (negative or positive) before software writes it to the trend buffer. Valid range is 0 or x to 100,000,000 (selected by entering 999999999).</td>
</tr>
</tbody>
</table>
The value of x is determined by the engineering unit of the point as follows:

<table>
<thead>
<tr>
<th>Engineering Unit</th>
<th>Decimal Position</th>
<th>Min. Value (x)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>.01</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>.001</td>
</tr>
</tbody>
</table>

If the value is 0, the trend behaves as in OS Ver. lower than 1.5 and is as follows:
If value is greater than 20, the change must be at least 1 percent. If the value is less than 20, the change must be at least .2 units

Default is 0 for points that are not part of an element. To lessen or turn off the transmission of trend data, assign a high number to this value or assign a value to the Trend Cycle field. The Trend Cycle value takes precedence over the Trend Hysteresis value. Software sends trend data based on either hysteresis value or time, not both.

Trend Cycle Counter
Available for controller OS greater than Ver. 2.03. This value is similar to the Trend Hysteresis value, but is based on time. The range is 0 to 65535 minutes.
A value of 0 disables time-based trending. Any value greater than 0 enables time-based trending. Time-based trending takes precedence over Trend Hysteresis value. Software sends trend data based on either hysteresis value or time, not both.

Override Status Flag
Indicates if there is an override by an operated manual switch located on the module (Auto / Manual Override)

No Response Flag
Shows whether the I/O module, the point is assigned to, communicates with the controller or not:
communication is established = online
communication is interrupted = not online

Safety Position
The safety position is the position the device is commanded to if the controller does not deliver a value (no response). It can be selected under:
- 5 %
- 50 %
- 100 %
- Last valid Position

The safety position is affected by the characteristic used for the controller modules. For particular characteristics there is no linear correlation between percentage value and voltage output:

<table>
<thead>
<tr>
<th>DP Type</th>
<th>Listbox number</th>
<th>Characteristic</th>
<th>Safety position (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 50 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>in DP values</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>in Volts</td>
</tr>
<tr>
<td>AO</td>
<td>1..10</td>
<td>User defined</td>
<td>0 5 10</td>
</tr>
<tr>
<td>AO</td>
<td>9</td>
<td>0-100%=2-10V</td>
<td>-25 37.5 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 5 10</td>
</tr>
<tr>
<td>AO</td>
<td>10</td>
<td>100-0%=2-10V</td>
<td>125 62.5 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 5 10</td>
</tr>
<tr>
<td>AO</td>
<td>12</td>
<td>LINEAR GRAPH</td>
<td>0 50 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 5 10</td>
</tr>
<tr>
<td>DP Type</td>
<td>Listbox number</td>
<td>Characteristic</td>
<td>Safety position (%)</td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
<td>---------------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>AO</td>
<td>24</td>
<td>0-10V=0-100%</td>
<td>0 50 100</td>
</tr>
<tr>
<td>AO</td>
<td>25</td>
<td>2-10V=0-100%</td>
<td>0 50 100</td>
</tr>
<tr>
<td>DO</td>
<td>--</td>
<td>DO on AO</td>
<td>OFF / ON</td>
</tr>
<tr>
<td>MOT</td>
<td>12</td>
<td>LINEAR GRAPH</td>
<td>0 50 100</td>
</tr>
</tbody>
</table>

NOTE: The user-defined characteristics 1 through 10 can be changed; in this context, characteristics 3, 4, 5, 6, 9, 10 are pre-defined by CARE (default characteristics) and characteristics 1 and 2 are not pre-defined. The default characteristics 3 through 6 are pressure input characteristics which should not be used for an analog output.

In general, for the user-defined characteristics 1 through 10, the safety positions 0%, 50%, 100% do always mean 0V, 5V, 10V; in this context the datapoint values for characteristics 9 and 10 are deviant.

Out: 35 Pct [override] 8 6

In1 … In16: Int1 .. In8 allow overriding the value manually. In1 shows the value if the point’s value is overridden via manual override switch on a module or emergency override.

Fallback: (not applicable)

Override Expiration: When the override action is automatically set to "auto" upon expiration of the override period.
Digital Input Point

Datapoint Name (C-Bus Numeric Writable)

(maximum of 18 alphanumeric characters) assigned to a point for operator use in locating and commanding the point. Examples: Rmtempfl1 and FlotempG/fl. The technical address and the descriptor further define the point. This name must be unique within a controller. User addresses must include one non-digit character and cannot include Tabs, double quotes, ?, *, or space characters. All other ASCII characters are allowable (A-Z, 0-9, +, -, _, etc.). For example, 12A is a valid user address, but 12 is not.

Proxy Ext

<table>
<thead>
<tr>
<th>Facets</th>
<th>Engineering units and state texts definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proxy Ext</td>
<td>The Proxy Extensions area shows standard Niagara functions. Only a few of them are used by C-Bus points and they are described in the following. For all unused Niagara properties, please refer to the detailed Niagara BACnet documentation.</td>
</tr>
<tr>
<td>Read Value</td>
<td>(read only) Last value read from the device, expressed in device facets.</td>
</tr>
<tr>
<td>Write Value</td>
<td>(read only) Applies if writable point only. Last value written, using device facets.</td>
</tr>
<tr>
<td>Config</td>
<td>Shows the CARE C-Bus datapoint properties</td>
</tr>
</tbody>
</table>
Centraline NX – C-Bus Driver User Guide

Operating Mode Status of point: Auto or Manual

Technical Address Internal six-digit number that defines and locates a point in the system. The technical address is composed of three pairs representing controller number (0-30), module number (1-16), and terminal number (1-12). Example: 010310 meaning Controller 1, Module 3, terminal 10. Operators use the User Address to refer to points.

Descriptor Supplemental point information (maximum of 32 characters). Each Excel Controller has a unique set of descriptors (64 for Ver. 1.2 Controllers; 255 for Ver 1.3 and greater Controllers) that can be assigned to its user addresses to further describe them. Example: user address “Rmtempfl1” can have a descriptor of “Heating circuit, West wing” to help define its location.

Last Change Date of last change of point value

Unit Engineering units with ID, unit, and format.

Runtime Counter Number of hours the runtime counter has counted

Service Interval Number of log hours after which software generates a maintenance alarm. Enter zero for no alarm message. Runtime Enabled must be enabled (Yes). Note that runtime accumulates only if the point is in the active state.

Runtime Enabled Whether or not to maintain a count of hours run (resolution one hour).
Hours since serviced
Number of hours since the last service.

Cycle Count
Value of a counter that represents the number of times a point is commanded to active state.

Active State
State that determines which point state (Logic 0 or 1) is the active ("normal") state. The other state is the passive ("alarm") state.

The following table shows the relationship between active and passive states and statuses as well as between N.O. and N.C.

<table>
<thead>
<tr>
<th>Hardware Condition</th>
<th>Logical State</th>
<th>Active State Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No voltage at screw terminal.</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>See Note 1.</td>
<td></td>
<td>Active Text, normal</td>
</tr>
<tr>
<td>Voltage at screw terminal.</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>See Note 2.</td>
<td></td>
<td>Passive Text, alarm</td>
</tr>
</tbody>
</table>

NOTES:
1. On an Excel 500 or 100, this is an open contact. On an Excel 80, this is a closed contact.
2. On an Excel 500 or 100, this is a closed contact. On an Excel 80, this is an open contact.

The active state flag affects the alarm state and engineering units that display for digital inputs. The point type (NO/NC) affects the logical operation of the point.

Note that software monitors point state only if the Alarm Point field is checked.

Active State only applies to controller OS Ver. lower than 2.04

Alarm Status
Alarm statuses can be normal or alarm

Suppress Alarm
Whether or not software should suppress alarm messages for changes in Fixed Mode and exceeding the alarm and warning limits.

Alarm Text
Alarm text that displays on point alarm.

Alarm Severity
Alarm type: critical or non-critical

Change of State Alarm
Whether or not software should monitor point changes from active to passive.

Alarm Delay
How long (0 through 3600 seconds) an alarm condition must exist before software generates an alarm.

Trend Logging
Indicates if trend logging in the controller is Enabled or Disabled.

No Response Flag
Shows whether the I/O module, the point is assigned to, communicates with the controller or not: communication is established = online communication is interrupted = not online

Contact type
Contact type can be Normally open or Normally closed

LED Mode
Shows whether the alarm LED is used in status mode or alarm mode with the following indication:
Status
Yellow = ON, No color = OFF

Alarm
Red = Alarm, Green = No alarm

<table>
<thead>
<tr>
<th>Out</th>
<th>Current value of the point</th>
</tr>
</thead>
<tbody>
<tr>
<td>In1 ... In16</td>
<td>Int1 ... In8 allow overriding the value manually. In1 shows the value if the point's value is overridden via manual override switch on a module or emergency override.</td>
</tr>
<tr>
<td>Fallback</td>
<td>(not applicable)</td>
</tr>
<tr>
<td>Override Expiration</td>
<td>When the override action is automatically set to "auto" upon expiration of the override period.</td>
</tr>
<tr>
<td>Min Active Time</td>
<td>Each BooleanWritable point has built-in timers to specify minimum on and/or minimum off times. The respective point properties are "Min Active Time" and "Min Inactive Time." The usage is optional, and both properties work independently. The typical usage is to prevent short-cycling of equipment controlled by the point.</td>
</tr>
<tr>
<td>Min Inactive Time</td>
<td>Default property times for a BooleanWritable are all zeros ("00000h 00m 00s") which effectively disables a timer. In either property, you can specify any value needed using a mix of hours (h), minutes (m), and seconds (s) to enable that timer.</td>
</tr>
<tr>
<td>Set Min Inactive Time On Start</td>
<td>A minimum timer is triggered by a state change transition to active or inactive. This results in the new state value being stored in the point's priority array (at priority level 6) for the duration of that timer. While a minimum timer is...</td>
</tr>
</tbody>
</table>
in effect, only input changes at a higher priority (5 or above) or an emergency action can affect the Out value.

For example, a BooleanWritable point controls a fan, with related properties set as follows:

Min Active Time: 00000h 01m 30s
Specifies that once started, the fan must run at least 90 seconds.

Min Inactive Time: 00000h 03m 5s
Specifies that once stopped, the fan must remain stopped at 3 minutes, 5 seconds.

Starting with the fan stopped at schedule level (priority 16), if a user gives it a manual override on (priority level 8), the fan will run for 90 seconds at priority level 6 (a higher level). After this period, the fan continues running at the override 8 level for the duration of the override.

During the initial 90 seconds, a different override action (off or auto) will be ineffective—as the higher priority level 6 remains in control. See Priority level conventions.

Once stopped, the point's minimum off time will keep the fan off at priority level 6 for the specified duration (in this example, 3 minutes and 5 seconds). During this period, only an emergency command or input change at In2–In5 can effect further change.

Set Min Inactive Time on Start
Defines if the "Min Inactive Time" takes place first in case of device or station start.
Digital Output Point

Datapoint Name

(C-Bus Numeric Writable
(maximum of 18 alphanumeric characters) assigned to a
point for operator use in locating and commanding the
point. Examples: Rmtemp1 and FlotempG/fl. The
technical address and the descriptor further define the
point. This name must be unique within a controller.
User addresses must include one non-digit character
and cannot include Tabs, double quotes, ?, *, or space
characters. All other ASCII characters are allowable (A-
Z, 0-9, +, -, _, etc.). For example, 12A is a valid user
address, but 12 is not.

Facets

Engineering units and state texts definition.

Proxy Ext

The Proxy Extensions area shows standard Niagara
functions. Only a few of them are used by C-Bus points
and they are described in the following. For all unused
Niagara properties, please refer to the detailed Niagara
BACnet documentation.

Read Value
(read only) Last value read from the device, expressed
in device facets.

Write Value
(read only) Applies if writable point only. Last value
written, using device facets.
Config	C Bus Point Config
Operating Mode | Auto
Technical Address | 2/3/2
Descriptor | [13] Return Air Fan
Last change | 1/19/17 2:50 PM
Unit | 13 - On / Off
Runtime Counter | 0
Service Interval | 0
Runtime Enabled | Disabled
Hours since serviced | 0
Cycle Count | 0
 Suppress Alarm | Enabled
Active State | 1
Alarm Severity | Noncritical
Override Status Flag | Automatic
No Response Flag | Online
Contact type | Normally Open
Safety Position | 0%

Config

- **Status of point:** Auto or Manual
- **Technical Address:** Internal six-digit number that defines and locates a point in the system. The technical address is composed of three pairs representing controller number (0-30), module number (1-16), and terminal number (1-12). Example: 010310 meaning Controller 1, Module 3, terminal 10. Operators use the User Address to refer to points.
- **Descriptor:** Supplemental point information (maximum of 32 characters). Each Excel Controller has a unique set of descriptors (64 for Ver. 1.2 Controllers; 255 for Ver 1.3 and greater Controllers) that can be assigned to its user addresses to further describe them. Example: user address “Rmtempfl1” can have a descriptor of “Heating circuit, West wing” to help define its location.
- **Last Change:** Date of last change of point value
- **Unit:** Engineering units with ID, unit, and format.
- **Runtime Counter:** Number of hours the runtime counter has counted
- **Service Interval:** Number of log hours after which software generates a maintenance alarm. Enter zero for no alarm message. Runtime Enabled must be enabled (Yes). Note that runtime accumulates only if the point is in the active state.
- **Runtime Enabled:** Whether or not to maintain a count of hours run (resolution one hour). Available only for non-pulsed DOs. This item does not display for pulse-type points.
- **Hours since serviced:** Number of hours since the last service
- **Cycle Count:** Value of a counter that represents the number of times a point is commanded to active state.
Suppress Alarm: Whether or not software should suppress alarm messages for changes in Fixed Mode and exceeding the alarm and warning limits.

Active State: State that determines which point state (Logic 0 or 1) is the active ("normal") state. The other state is the passive ("alarm") state.

The following table shows the relationship between active and passive states and statuses, as well as between energized and deenergized:

<table>
<thead>
<tr>
<th>Hardware Condition</th>
<th>Active State Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deenergized</td>
<td>Active Text, Logic 1</td>
</tr>
<tr>
<td></td>
<td>Passive Text, Logic 0</td>
</tr>
<tr>
<td>Energized</td>
<td>Passive Text, Logic 0</td>
</tr>
<tr>
<td></td>
<td>Active Text, Logic 1</td>
</tr>
</tbody>
</table>

The active state flag affects the logical operation and engineering units of digital outputs. The point type (NO/NC) only affects the terminal assignment during you attach the plant.

Active State only applies to controller OS Ver. lower than 2.04.

Alarm Severity: Alarm type: critical or non-critical

Override Status Flag: Indicates if there is an override by an operated manual switch located on the module (Auto / Manual Override)

No Response Flag: Shows whether the I/O module, the point is assigned to, communicates with the controller or not: communication is established = online communication is interrupted = not online

Contact type: Contact type can be Normally open or Normally closed

Safety Position: The safety position is the position the device is commanded to if the controller does not deliver a value (no response). It can be selected under:
- OFF (logical)
- ON (logical) device is commanded to the selected logical state
- Last valid Position device is commanded to the last valid position
Out Current value of the point

In1 … In16 Int1 .. In8 allow overriding the value manually. In1 shows the value if the point’s value is overridden via manual override switch on a module or emergency override.

Fallback (not applicable)

Override Expiration When the override action is automatically set to "auto" upon expiration of the override period.

Min Active Time

Min Inactive Time

Each BooleanWritable point has built-in timers to specify minimum on and/or minimum off times. The respective point properties are "Min Active Time" and "Min Inactive Time." The usage is optional, and both properties work independently. The typical usage is to prevent short-cycling of equipment controlled by the point.

Default property times for a BooleanWritable are all zeros ("00000h 00m 00s") which effectively disables a timer. In either property, you can specify any value needed using a mix of hours (h), minutes (m), and seconds (s) to enable that timer.

A minimum timer is triggered by a state change transition to active or inactive. This results in the new state value being stored in the point's priority array (at priority level 6) for the duration of that timer. While a minimum timer is in effect, only input changes at a higher priority (5 or above) or an emergency action can affect the Out value.

For example, a BooleanWritable point controls a fan, with related properties set as follows:
Min Active Time: 00000h 01m 30s

Specifies that once started, the fan must run at least 90 seconds.

Min Inactive Time: 00000h 03m 5s

Specifies that once stopped, the fan must remain stopped at 3 minutes, 5 seconds.

Starting with the fan stopped at schedule level (priority 16), if a user gives it a manual override on (priority level 8), the fan will run for 90 seconds at priority level 6 (a higher level). After this period, the fan continues running at the override 8 level for the duration of the override.

During the initial 90 seconds, a different override action (off or auto) will be ineffective—as the higher priority level 6 remains in control. See Priority level conventions.

Once stopped, the point's minimum off time will keep the fan off at priority level 6 for the specified duration (in this example, 3 minutes and 5 seconds). During this period, only an emergency command or input change at In2--In5 can effect further change.

Set Min Inactive Time on Start

Defines if the "Min Inactive Time" takes place first in case of device or station start.
Analog Value Point

Datapoint Name

(C-Bus Numeric Writable)

(maximum of 18 alphanumeric characters) assigned to a point for operator use in locating and commanding the point. Examples: Rmtempfl1 and FlotempG/fl. The technical address and the descriptor further define the point. This name must be unique within a controller. User addresses must include one non-digit character and cannot include Tabs, double quotes, ?, *, or space characters. All other ASCII characters are allowable (A-Z, 0-9, +, -, _, etc.). For example, 12A is a valid user address, but 12 is not.

Facets

Engineering units and state texts definition

Proxy Ext

The Proxy Extensions area shows standard Niagara functions. Only a few of them are used by C-Bus points and they are described in the following. For all unused Niagara properties, please refer to the detailed Niagara BACnet documentation.

Read Value
(read only) Last value read from the device, expressed in device facets.

Write Value
(read only) Applies if writable point only. Last value written, using device facets.
CENTRALINE NX – C-BUS DRIVER USER GUIDE

Config

<table>
<thead>
<tr>
<th>Config</th>
<th>C Bus Point Config</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Mode</td>
<td>Auto</td>
</tr>
<tr>
<td>Technical Address</td>
<td>2/1/1</td>
</tr>
<tr>
<td>Descriptor</td>
<td>[15] Average Room Temp 1st floor</td>
</tr>
<tr>
<td>Last change</td>
<td>1/19/17 2:54 PM</td>
</tr>
<tr>
<td>High Alarm Limit</td>
<td>99999.00</td>
</tr>
<tr>
<td>High Warning Limit</td>
<td>99999.00</td>
</tr>
<tr>
<td>Low Warning Limit</td>
<td>50.00</td>
</tr>
<tr>
<td>Low Alarm Limit</td>
<td>50.00</td>
</tr>
<tr>
<td>Unit</td>
<td>3 °C [I]</td>
</tr>
<tr>
<td>Alarm Status</td>
<td>Normal</td>
</tr>
<tr>
<td>Suppress Alarm</td>
<td>Enabled</td>
</tr>
<tr>
<td>Alarm Text</td>
<td>[1] Temp out of range</td>
</tr>
<tr>
<td>Alarm Severity</td>
<td>Noncritical</td>
</tr>
<tr>
<td>Alarm Hysteresis</td>
<td>0.00</td>
</tr>
<tr>
<td>Trend Logging</td>
<td>Disabled</td>
</tr>
<tr>
<td>Trend Hysteresis</td>
<td>0.00</td>
</tr>
<tr>
<td>Trend Cycle Counter</td>
<td>0</td>
</tr>
<tr>
<td>No Response Flag</td>
<td>Online</td>
</tr>
</tbody>
</table>

Config

- **Config**
 - **Operating Mode**: Shows the CARE C-Bus datapoint properties
 - **Status of point**: Auto or Manual

- **Technical Address**: Internal six-digit number that defines and locates a point in the system. The technical address is composed of three pairs representing controller number (0-30), module number (1-16), and terminal number (1-12). Example: 010310 meaning Controller 1, Module 3, terminal 10. Operators use the User Address to refer to points.

- **Descriptor**: Supplemental point information (maximum of 32 characters). Each Excel Controller has a unique set of descriptors (64 for Ver. 1.2 Controllers; 255 for Ver 1.3 and greater Controllers) that can be assigned to its user addresses to further describe them. Example: user address “Rmtempfl1” can have a descriptor of “Heating circuit, West wing” to help define its location.

- **Last Change**: Last change of datapoint properties

- **High Alarm Limit, High Warning Limit, Low Warning Limit, Low Alarm Limit**: High (mNX) and low (min) limits for point value. Limit values must be between the limits for the associated Characteristics. Limit values must also maintain the following relationship:
 - High Alarm ≥ High Warning > Low Warning ≥ Low Alarm
 - If you change the Characteristics assignment, the High limits default to the maximum characteristic value (if larger than the new mNX) and the Low limits default to the minimum characteristic value (if smaller than the new min). The limits change only if they are outside the range of the new characteristic.
Unit Engineering units with ID, unit, and format.

Alarm Status Alarm statuses can be normal or alarm

Suppress Alarm Whether or not software should suppress alarm messages for changes in Fixed Mode and exceeding the alarm and warning limits.

Alarm Text Alarm text that displays on point alarm.

Alarm Severity Alarm type: critical or non-critical

Alarm Delay How long (0 through 3600 seconds) an alarm condition must exist before software generates an alarm.

Alarm Hysteresis Available for controller OS Ver. greater than 1.5. This value is the amount that an analog point must change before software reports an alarm or return-to-normal. Value range is 0 or x to y where x is determined by the engineering unit decimal position and y is determined by the difference of the high warning limit - low warning.

Engineering Unit

<table>
<thead>
<tr>
<th>Decimal Position</th>
<th>Min. Value (x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.0</td>
</tr>
<tr>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>.01</td>
</tr>
<tr>
<td>3</td>
<td>.001</td>
</tr>
</tbody>
</table>

Diff: = high warning limit - low warning.

For example, if the analog point has the following values:

- engineering unit = Degrees with one decimal point
- high alarm limit = 85.0
- high warning limit = 82.0
- low warning limit = 68.0
- low alarm limit = 65.0

Diff = 82.0 - 68.0 = 14.0

Therefore, the valid range is .01 to 14.

Default varies between 1 and 5 depending on schematic element. If the value is zero, fixed hysteresis applies.

Trend Logging Indicates if trend logging in the controller is Enabled or Disabled.

Trend Hysteresis Available for controller OS Ver. greater than 1.5. The value that the point must change (negative or positive) before software writes it to the trend buffer. Valid range is 0 or x to 100,000,000 (selected by entering 99999999). The value of x is determined by the engineering unit of the point as follows:

Engineering Unit

<table>
<thead>
<tr>
<th>Decimal Position</th>
<th>Min. Value (x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.0</td>
</tr>
<tr>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>.01</td>
</tr>
<tr>
<td>3</td>
<td>.001</td>
</tr>
</tbody>
</table>

If the value is 0, the trend behaves as in OS Ver. lower than 1.5 and is as follows:

- If value is greater than 20, the change must be at least 1 percent.
- If the value is less than 20, the change must be at least .2 units

Default is 0 for points that are not part of an element. To lessen or turn off the transmission of trend data, assign a high number to this value or assign a value to the Trend...
Cycle field. The Trend Cycle value takes precedence over the Trend Hysteresis value. Software sends trend data based on either hysteresis value or time, not both.

Trend Cycle Counter
Available for controller OS greater than Ver. 2.03. This value is similar to the Trend Hysteresis value, but is based on time. The range is 0 to 65535 minutes. A value of 0 disables time-based trending. Any value greater than 0 enables time-based trending. Time-based trending takes precedence over Trend Hysteresis value. Software sends trend data based on either hysteresis value or time, not both.

No Response Flag
Shows whether the I/O module, the point is assigned to, communicates with the controller or not:
communication is established = online
communication is interrupted = not online

<table>
<thead>
<tr>
<th>Out</th>
<th>Current value of the point</th>
</tr>
</thead>
<tbody>
<tr>
<td>In1</td>
<td>- {null}</td>
</tr>
<tr>
<td>In2</td>
<td>- {null}</td>
</tr>
<tr>
<td>In3</td>
<td>- {null}</td>
</tr>
<tr>
<td>In4</td>
<td>- {null}</td>
</tr>
<tr>
<td>In5</td>
<td>- {null}</td>
</tr>
<tr>
<td>In6</td>
<td>- {null}</td>
</tr>
<tr>
<td>In7</td>
<td>- {null}</td>
</tr>
<tr>
<td>In8</td>
<td>- {null}</td>
</tr>
<tr>
<td>In9</td>
<td>- {null}</td>
</tr>
<tr>
<td>In10</td>
<td>- {null}</td>
</tr>
<tr>
<td>In11</td>
<td>- {null}</td>
</tr>
<tr>
<td>In12</td>
<td>- {null}</td>
</tr>
<tr>
<td>In13</td>
<td>- {null}</td>
</tr>
<tr>
<td>In14</td>
<td>- {null}</td>
</tr>
<tr>
<td>In15</td>
<td>- {null}</td>
</tr>
<tr>
<td>In16</td>
<td>- {null}</td>
</tr>
<tr>
<td>Fallback</td>
<td>(not applicable)</td>
</tr>
</tbody>
</table>
| Override Expiration | When the override action is automatically set to "auto" upon expiration of the override period.

Out Current value of the point
In1 ... In16 Int1 .. In8 allow overriding the value manually. In1 shows the value if the point’s value is overridden via manual override switch on a module or emergency override.

Fallback (not applicable)
Override Expiration When the override action is automatically set to "auto" upon expiration of the override period.
Datapoint Name
(C-Bus Numeric Writable)
(maximum of 18 alphanumeric characters) assigned to a point for operator use in locating and commanding the point. Examples: Rmtempfl1 and FlotempG/fl. The technical address and the descriptor further define the point. This name must be unique within a controller. User addresses must include one non-digit character and cannot include Tabs, double quotes, ?, *, or space characters. All other ASCII characters are allowable (A-Z, 0-9, +, -, _, etc.). For example, 12A is a valid user address, but 12 is not.

Facets
Engineering units and state texts definition

Proxy Ext
The Proxy Extensions area shows standard Niagara functions. Only a few of them are used by C-Bus points and they are described in the following. For all unused Niagara properties, please refer to the detailed Niagara BACnet documentation.

Read Value
(read only) Last value read from the device, expressed in device facets.

Write Value
(read only) Applies if writable point only. Last value written, using device facets.
Config

Shows the CARE C-Bus datapoint properties

Operating Mode
Status of point: Auto or Manual

Technical Address
Internal six-digit number that defines and locates a point in the system. The technical address is composed of three pairs representing controller number (0-30), module number (1-16), and terminal number (1-12). Example: 010310 meaning Controller 1, Module 3, terminal 10. Operators use the User Address to refer to points.

Descriptor
Supplemental point information (maximum of 32 characters). Each Excel Controller has a unique set of descriptors (64 for Ver. 1.2 Controllers; 255 for Ver 1.3 and greater Controllers) that can be assigned to its user addresses to further describe them. Example: user address “Rmtempfl1” can have a descriptor of “Heating circuit, West wing” to help define its location.

Last Change
Date of last change of point value

Highest Point Value
Displays the highest state number used.

Unit
Engineering units with ID, unit, and format.

Runtime Counter
Number of hours the runtime counter has counted

Service Interval
Number of log hours after which software generates a maintenance alarm. Enter zero for no alarm message. Runtime Enabled must be enabled (Yes). Note that runtime accumulates only if the point is in the active state.
Runtime Enabled
Whether or not to maintain a count of hours run (resolution one hour).

Hours since serviced
Number of hours since the last service

Cycle Count
Value of a counter that represents the number of times a point is commanded to active state.

Active State
State that determines which point state (Logic 0 or 1) is the active ("normal") state. The other state is the passive ("alarm") state.

The following table shows the relationship between active and passive states and statuses as well as between N.O. and N.C.

<table>
<thead>
<tr>
<th>Logical State</th>
<th>Active State Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Active Text, normal</td>
</tr>
<tr>
<td>1</td>
<td>Passive Text, alarm</td>
</tr>
</tbody>
</table>

NOTES:
1. On an Excel 500 or 100, this is an open contact. On an Excel 80, this is a closed contact.
2. On an Excel 500 or 100, this is a closed contact. On an Excel 80, this is an open contact.

The active state flag affects the alarm state and engineering units that display for digital inputs. The point type (NO/NC) affects the logical operation of the point.

Note that software monitors point state only if the Alarm Point field is checked.

Active State only applies to controller OS Ver. lower than 2.04

Alarm Status
Alarm statuses can be normal or alarm

Suppress Alarm
Whether or not software should suppress alarm messages for changes in Fixed Mode and exceeding the alarm and warning limits.

Alarm Text
Alarm text that displays on point alarm.

Alarm Severity
Alarm type: critical or non-critical

Change of State Alarm
Whether or not software should monitor point changes from active to passive.

Trend Logging
Indicates if trend logging in the controller is Enabled or Disabled.

No Response Flag
Shows whether the I/O module, the point is assigned to, communicates with the controller or not: communication is established = online communication is interrupted = not online
<table>
<thead>
<tr>
<th></th>
<th>Current value of the point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out</td>
<td>Winter {down} & def</td>
</tr>
<tr>
<td>In1</td>
<td>- {null}</td>
</tr>
<tr>
<td>In2</td>
<td>- {null}</td>
</tr>
<tr>
<td>In3</td>
<td>- {null}</td>
</tr>
<tr>
<td>In4</td>
<td>- {null}</td>
</tr>
<tr>
<td>In5</td>
<td>- {null}</td>
</tr>
<tr>
<td>In6</td>
<td>- {null}</td>
</tr>
<tr>
<td>In7</td>
<td>- {null}</td>
</tr>
<tr>
<td>In8</td>
<td>- {null}</td>
</tr>
<tr>
<td>In9</td>
<td>- {null}</td>
</tr>
<tr>
<td>In10</td>
<td>- {null}</td>
</tr>
<tr>
<td>In11</td>
<td>- {null}</td>
</tr>
<tr>
<td>In12</td>
<td>- {null}</td>
</tr>
<tr>
<td>In13</td>
<td>- {null}</td>
</tr>
<tr>
<td>In14</td>
<td>- {null}</td>
</tr>
<tr>
<td>In15</td>
<td>- {null}</td>
</tr>
<tr>
<td>In16</td>
<td>- {null}</td>
</tr>
<tr>
<td>Fallback</td>
<td>- {null}</td>
</tr>
<tr>
<td>Override Expiration</td>
<td>null</td>
</tr>
</tbody>
</table>

Out

Current value of the point

In1 ... In16

Int1 .. In8 allow overriding the value manually. In1 shows the value if the point’s value is overridden via manual override switch on a module or emergency override.

Fallback

(not applicable)

Override Expiration

When the override action is automatically set to "auto" upon expiration of the override period.
Global Points

Purpose
Display and/or modify the attributes for the selected global analog point.

Definition
Global points are a type of pseudopoint that can be either an input or output. The purpose of global points is to share point information across controllers on a bus.

Global inputs receive information from a point in another controller. Use a global input when one controller has a point that should be global to many other controllers.

Global outputs send information to other points in other controllers. Use a global output when one controller has a point that is global to only one point in another controller. You can also use global outputs for some control icons that only connect to outputs and the output must be global. Global outputs can only be associated with pseudopoints or output points (not input points).

Global Inputs
Each global input is associated with a pseudopoint or physical point ("originator" point) somewhere on the bus and has the same user address, controller number in the technical address, engineering unit, and type (analog or digital) as the point. The originator point cannot be a global point.

Global Input Point Operation
The system updates global inputs every 2 minutes. It also updates global analog inputs when the originator point changes significantly. If point value is greater than 20, the change must be at least 1 percent. If point value is less than or equal to 20, the change must be at least .2 units. For example:

<table>
<thead>
<tr>
<th>Point Value</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>200</td>
<td>2</td>
</tr>
<tr>
<td>50</td>
<td>.5</td>
</tr>
<tr>
<td>10</td>
<td>.2</td>
</tr>
<tr>
<td>5</td>
<td>.2</td>
</tr>
</tbody>
</table>

For global digital points, a change of state triggers an update.

Global Outputs
Each global output is associated with a pseudopoint or physical point ("receiver" point) somewhere on the bus and has the same user address, technical address, engineering unit, and type (analog or digital output) as the point.
Global Output Point Operation

The system updates the receiver points when the global analog outputs change significantly. If global value is greater than 20, the change must be at least 1 percent. If global value is less than or equal to 20, the change must be at least .2 units. For example:

<table>
<thead>
<tr>
<th>Global Value</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>200</td>
<td>2</td>
</tr>
<tr>
<td>50</td>
<td>.5</td>
</tr>
<tr>
<td>10</td>
<td>.2</td>
</tr>
<tr>
<td>5</td>
<td>.2</td>
</tr>
</tbody>
</table>

For global digital points, a change of state triggers an update.

There is no automatic 2-minute refresh for global output points.
Global Analog Point

Datapoint Name

(C-Bus Numeric Writable)
(maximum of 18 alphanumeric characters) assigned to a point for operator use in locating and commanding the point. Examples: Rmtempfl1 and FlotempG/fl. The technical address and the descriptor further define the point. This name must be unique within a controller. User addresses must include one non-digit character and cannot include Tabs, double quotes, ?, *, or space characters. All other ASCII characters are allowable (A-Z, 0-9, +, -, _, etc.). For example, 12A is a valid user address, but 12 is not.

Facets

Engineering units and state texts definition

Proxy Ext

The Proxy Extensions area shows standard Niagara functions. Only a few of them are used by C-Bus points and they are described in the following. For all unused Niagara properties, please refer to the detailed Niagara BACnet documentation.

- **Read Value**
 (read only) Last value read from the device, expressed in device facets.

- **Write Value**
 (read only) Applies if writable point only. Last value written, using device facets.
Config

Shows the CARE C-Bus datapoint properties

Operating Mode
Status of point: Auto or Manual

Technical Address
Internal six-digit number that defines and locates a point in the system. The technical address is composed of three pairs representing controller number (0-30), module number (1-16), and terminal number (1-12). Example: 010310 meaning Controller 1, Module 3, terminal 10. Operators use the User Address to refer to points.

Descriptor
Supplemental point information (maximum of 32 characters). Each Excel Controller has a unique set of descriptors (64 for Ver. 1.2 Controllers; 255 for Ver 1.3 and greater Controllers) that can be assigned to its user addresses to further describe them. Example: user address “Rmtempfl1” can have a descriptor of “Heating circuit, West wing” to help define its location.

Unit
Engineering units with ID, unit, and format.

Trend Hysteresis
Available for controller OS Ver. greater than 1.5. The value that the point must change (negative or positive) before software writes it to the trend buffer. Valid range is 0 or x to 100,000,000 where x is determined by the engineering unit of the point as follows:

<table>
<thead>
<tr>
<th>Engineering Unit</th>
<th>Decimal Position</th>
<th>Min. Value (x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>.001</td>
<td></td>
</tr>
</tbody>
</table>

If the value is 0, the trend behaves as in OS Ver. lower than 1.5 and is as follows:
If value is greater than 20, the change must be at least 1 percent. If the value is less than 20, the change must be at least .2 units. Default is 0.
To lessen or turn off the transmission of trend data, assign a high number to this value or assign a value to the Trend Cycle Minutes field. The Trend Cycle Minutes value takes precedence over the Trend Hysteresis value. Software sends trend data based on either hysteresis value or time, not both.

Trend Cycle Counter
Available for controller OS greater than Ver. 2.03. This value is similar to the Trend Hysteresis value, but is based on time. The range is 0 to 65535 minutes.
A value of 0 disables time-based trending. Any value greater than 0 enables time-based trending. Time-based trending takes precedence over Trend Hysteresis value. Software sends trend data based on either hysteresis value or time, not both.

No Response Flag
Shows whether the I/O module, the point is assigned to, communicates with the controller or not:
- communication is established = online
- communication is interrupted = not online

Broadcast Hysteresis
Available for controller OS Ver. 1.5. This value is that amount that a point must change before software broadcasts it to other controllers. Value range is 0 or x to 100,000,000 where x is determined by engineering unit decimal position as follows.

<table>
<thead>
<tr>
<th>Engineering Unit</th>
<th>Decimal Position</th>
<th>Min. Value (x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1.0</td>
</tr>
<tr>
<td>1</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>.01</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>.001</td>
<td></td>
</tr>
</tbody>
</table>

If the value is 0, software constantly broadcasts to the controllers. Default is 0. If several global points are assigned to the same physical point, the lowest global point broadcast hysteresis from the assigned global point is used. This value can also be accessed by the RIA and WIA control icons.

To lessen or turn off the frequency of broadcasts, assign a high number to this value.

<table>
<thead>
<tr>
<th>Out</th>
<th>0.00 [down]</th>
<th>def</th>
</tr>
</thead>
<tbody>
<tr>
<td>In1</td>
<td>- {null}</td>
<td></td>
</tr>
<tr>
<td>In2</td>
<td>- {null}</td>
<td></td>
</tr>
<tr>
<td>In3</td>
<td>- {null}</td>
<td></td>
</tr>
<tr>
<td>In4</td>
<td>- {null}</td>
<td></td>
</tr>
<tr>
<td>In5</td>
<td>- {null}</td>
<td></td>
</tr>
<tr>
<td>In6</td>
<td>- {null}</td>
<td></td>
</tr>
<tr>
<td>In7</td>
<td>- {null}</td>
<td></td>
</tr>
<tr>
<td>In8</td>
<td>- {null}</td>
<td></td>
</tr>
<tr>
<td>In9</td>
<td>- {null}</td>
<td></td>
</tr>
<tr>
<td>In10</td>
<td>- {null}</td>
<td></td>
</tr>
<tr>
<td>In11</td>
<td>- {null}</td>
<td></td>
</tr>
<tr>
<td>In12</td>
<td>- {null}</td>
<td></td>
</tr>
<tr>
<td>In13</td>
<td>- {null}</td>
<td></td>
</tr>
<tr>
<td>In14</td>
<td>- {null}</td>
<td></td>
</tr>
<tr>
<td>In15</td>
<td>- {null}</td>
<td></td>
</tr>
<tr>
<td>In16</td>
<td>- {null}</td>
<td></td>
</tr>
<tr>
<td>Fallback</td>
<td>- {null}</td>
<td></td>
</tr>
</tbody>
</table>

Override Expiration | null |

Out | Current value of the point
In1 ... In16 | Int1...In8 allow overriding the value manually. In1 shows the value if the point’s value is overridden via manual override switch on a module or emergency override.
Global Digital Point

Datapoint Name

(C-Bus Numeric Writable)

(maximum of 18 alphanumeric characters) assigned to a point for operator use in locating and commanding the point. Examples: Rmtempfl1 and FlotempG/fl. The technical address and the descriptor further define the point. This name must be unique within a controller. User addresses must include one non-digit character and cannot include Tabs, double quotes, ?, *, or space characters. All other ASCII characters are allowable (A-Z, 0-9, +, -, _, etc.). For example, 12A is a valid user address, but 12 is not.

Facets

Engineering units and state texts definition

Proxy Ext

The Proxy Extensions area shows standard Niagara functions. Only a few of them are used by C-Bus points and they are described in the following. For all unused Niagara properties, please refer to the detailed Niagara BACnet documentation.

Read Value
(read only) Last value read from the device, expressed in device facets.

Write Value
(read only) Applies if writable point only. Last value written, using device facets.
Config

Shows the CARE C-Bus datapoint properties.

Operating Mode
Status of point: Auto or Manual.

Technical Address
Internal six-digit number that defines and locates a point in the system. The technical address is composed of three pairs representing controller number (0-30), module number (1-16), and terminal number (1-12). Example: 010310 meaning Controller 1, Module 3, terminal 10. Operators use the User Address to refer to points.

Descriptor
Supplemental point information (maximum of 32 characters). Each Excel Controller has a unique set of descriptors (64 for Ver. 1.2 Controllers; 255 for Ver 1.3 and greater Controllers) that can be assigned to its user addresses to further describe them. Example: user address "Rmtempfl1" can have a descriptor of "Heating circuit, West wing" to help define its location.

Highest Point Value
Engineering units with ID, unit, and format.

Active State
State that determines which point state (Logic 0 or 1) is the active ("normal") state. The other state is the passive ("alarm") state.

The following table shows the relationship between active and passive states and statuses, as well as between energized and deenergized.

<table>
<thead>
<tr>
<th>Hardware Condition</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deenergized</td>
<td>Active Text, Logic 1</td>
<td>Passive Text, Logic 0</td>
</tr>
<tr>
<td>Energized</td>
<td>Passive Text, Logic 0</td>
<td>Active Text, Logic 1</td>
</tr>
</tbody>
</table>

The active state flag affects the logical operation and engineering units of digital outputs. The point type (NO/NC) only affects the terminal assignment during you attach the plant.

Active State only applies to controller OS Ver. lower than 2.04.

No Response Flag
Shows whether the I/O module, the point is assigned to, communicates with the controller or not: communication is established = online, communication is interrupted = not online.
<table>
<thead>
<tr>
<th></th>
<th>Out</th>
<th>Alarm (down) & def</th>
</tr>
</thead>
<tbody>
<tr>
<td>In1</td>
<td>- {null}</td>
<td></td>
</tr>
<tr>
<td>In2</td>
<td>- {null}</td>
<td></td>
</tr>
<tr>
<td>In3</td>
<td>- {null}</td>
<td></td>
</tr>
<tr>
<td>In4</td>
<td>- {null}</td>
<td></td>
</tr>
<tr>
<td>In5</td>
<td>- {null}</td>
<td></td>
</tr>
<tr>
<td>In6</td>
<td>- {null}</td>
<td></td>
</tr>
<tr>
<td>In7</td>
<td>- {null}</td>
<td></td>
</tr>
<tr>
<td>In8</td>
<td>- {null}</td>
<td></td>
</tr>
<tr>
<td>In9</td>
<td>- {null}</td>
<td></td>
</tr>
<tr>
<td>In10</td>
<td>- {null}</td>
<td></td>
</tr>
<tr>
<td>In11</td>
<td>- {null}</td>
<td></td>
</tr>
<tr>
<td>In12</td>
<td>- {null}</td>
<td></td>
</tr>
<tr>
<td>In13</td>
<td>- {null}</td>
<td></td>
</tr>
<tr>
<td>In14</td>
<td>- {null}</td>
<td></td>
</tr>
<tr>
<td>In15</td>
<td>- {null}</td>
<td></td>
</tr>
<tr>
<td>In16</td>
<td>- {null}</td>
<td></td>
</tr>
<tr>
<td>Fallback</td>
<td>- {null}</td>
<td></td>
</tr>
</tbody>
</table>

Out Current value of the point

In1 ... In16 Int1 .. In8 allow overriding the value manually. In1 shows the value if the point’s value is overridden via manual override switch on a module or emergency override.

Fallback (not applicable)

Override Expiration When the override action is automatically set to "auto" upon expiration of the override period.
Totalizer Point

Datapoint Name

(C-Bus Numeric Writable) (maximum of 18 alphanumeric characters) assigned to a point for operator use in locating and commanding the point. Examples: Rmtempfl1 and FlotempG/fl. The technical address and the descriptor further define the point. This name must be unique within a controller. User addresses must include one non-digit character and cannot include Tabs, double quotes, ?, *, or space characters. All other ASCII characters are allowable (A-Z, 0-9, +, -, _, etc.). For example, 12A is a valid user address, but 12 is not.

Facets

Engineering units and state texts definition

Proxy Ext

The Proxy Extensions area shows standard Niagara functions. Only a few of them are used by C-Bus points and they are described in the following. For all unused Niagara properties, please refer to the detailed Niagara BACnet documentation.

- **Read Value**
 (read only) Last value read from the device, expressed in device facets.

- **Write Value**
 (read only) Applies if writable point only. Last value written, using device facets.
Config

Operating Mode
Status of point: Auto or Manual

Technical Address
Internal six-digit number that defines and locates a point in the system. The technical address is composed of three pairs representing controller number (0-30), module number (1-16), and terminal number (1-12). Example: 010310 meaning Controller 1, Module 3, terminal 10. Operators use the User Address to refer to points.

Descriptor
Supplemental point information (maximum of 32 characters). Each Excel Controller has a unique set of descriptors (64 for Ver. 1.2 Controllers; 255 for Ver. 1.3 and greater Controllers) that can be assigned to its user addresses to further describe them. Example: user address “Rmtempfl1” can have a descriptor of “Heating circuit, West wing” to help define its location.

Unit
Engineering units with ID, unit, and format.

Delta Counter Values
When the counter values are expired, e.g. every 1000 operating hours, a service alarm is generated.

Interval Counter
Number of transitions for software to count (0.0 through 99,999,999.9) before generating an alarm.

Scaling Factor
Amount of measured unit per incoming transition (0 through 9,999,999).

Suppress Alarm
Whether or not software should suppress alarm messages for changes in Fixed Mode and exceeding the alarm and warning limits.

Alarm Severity
Alarm type: critical or non-critical

Trend Logging
Indicates if trend logging in the controller is Enabled or Disabled.

No Response Flag
Shows whether the I/O module, the point is assigned to, communicates with the controller or not: communication is established = online communication is interrupted = not online
Out
Current value of the point

In1 ... In16
In1 ... In8 allow overriding the value manually. In1 shows the value if the point’s value is overridden via manual override switch on a module or emergency override.

Fallback
(not applicable)

Override Expiration
When the override action is automatically set to "auto" upon expiration of the override period.

<table>
<thead>
<tr>
<th>Out</th>
<th>0 Out {down} @ def</th>
</tr>
</thead>
<tbody>
<tr>
<td>In1</td>
<td>- {null}</td>
</tr>
<tr>
<td>In2</td>
<td>- {null}</td>
</tr>
<tr>
<td>In3</td>
<td>- {null}</td>
</tr>
<tr>
<td>In4</td>
<td>- {null}</td>
</tr>
<tr>
<td>In5</td>
<td>- {null}</td>
</tr>
<tr>
<td>In6</td>
<td>- {null}</td>
</tr>
<tr>
<td>In7</td>
<td>- {null}</td>
</tr>
<tr>
<td>In8</td>
<td>- {null}</td>
</tr>
<tr>
<td>In9</td>
<td>- {null}</td>
</tr>
<tr>
<td>In10</td>
<td>- {null}</td>
</tr>
<tr>
<td>In11</td>
<td>- {null}</td>
</tr>
<tr>
<td>In12</td>
<td>- {null}</td>
</tr>
<tr>
<td>In13</td>
<td>- {null}</td>
</tr>
<tr>
<td>In14</td>
<td>- {null}</td>
</tr>
<tr>
<td>In15</td>
<td>- {null}</td>
</tr>
<tr>
<td>In16</td>
<td>- {null}</td>
</tr>
<tr>
<td>Fallback</td>
<td>null</td>
</tr>
</tbody>
</table>
Pseudo Totalizer Point

Datapoint Name (C-Bus Numeric Writable) (maximum of 18 alphanumeric characters) assigned to a point for operator use in locating and commanding the point. Examples: Rmtempfl1 and FlotempG/fl. The technical address and the descriptor further define the point. This name must be unique within a controller. User addresses must include one non-digit character and cannot include Tabs, double quotes, ?, *, or space characters. All other ASCII characters are allowable (A-Z, 0-9, +, -, _, etc.). For example, 12A is a valid user address, but 12 is not.

Facets Engineering units and state texts definition

Proxy Ext The Proxy Extensions area shows standard Niagara functions. Only a few of them are used by C-Bus points and they are described in the following. For all unused Niagara properties, please refer to the detailed Niagara BACnet documentation.

Read Value (read only) Last value read from the device, expressed in device facets.

Write Value (read only) Applies if writable point only. Last value written, using device facets.
Config

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Mode</td>
<td>Status of point: Auto or Manual</td>
</tr>
<tr>
<td>Technical Address</td>
<td>Internal six-digit number that defines and locates a point in the system. The technical address is composed of three pairs representing controller number (0-30), module number (1-16), and terminal number (1-12). Example: 010310 meaning Controller 1, Module 3, terminal 10. Operators use the User Address to refer to points.</td>
</tr>
<tr>
<td>Descriptor</td>
<td>Supplemental point information (maximum of 32 characters). Each Excel Controller has a unique set of descriptors (64 for Ver. 1.2 Controllers; 255 for Ver 1.3 and greater Controllers) that can be assigned to its user addresses to further describe them. Example: user address "Rmtempfl1" can have a descriptor of "Heating circuit, West wing" to help define its location.</td>
</tr>
<tr>
<td>Last Change</td>
<td>Date of last change of point value</td>
</tr>
<tr>
<td>Unit</td>
<td>Engineering units with ID, unit, and format.</td>
</tr>
<tr>
<td>Delta Counter Values</td>
<td>When the counter values are expired, e.g. every 1000 operating hours, a service alarm is generated.</td>
</tr>
<tr>
<td>Interval Counter</td>
<td>Number of transitions for software to count (0.0 through 99,999,999.9) before generating an alarm.</td>
</tr>
<tr>
<td>Scaling Factor</td>
<td>Amount of measured unit per incoming transition (0 through 9,999,999).</td>
</tr>
<tr>
<td>Suppress Alarm</td>
<td>Whether or not software should suppress alarm messages for changes in Fixed Mode and exceeding the alarm and warning limits</td>
</tr>
<tr>
<td>Alarm Severity</td>
<td>Alarm type: critical or non-critical</td>
</tr>
<tr>
<td>Trend Logging</td>
<td>Indicates if trend logging in the controller is Enabled or Disabled.</td>
</tr>
</tbody>
</table>
No Response Flag
Shows whether the I/O module, the point is assigned to, communicates with the controller or not:
- communication is established = online
- communication is interrupted = not online

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Out</td>
<td>Current value of the point</td>
</tr>
<tr>
<td>In1 ... In16</td>
<td>Int1 .. In8 allow overriding the value manually. In1 shows the value if the point’s value is overridden via manual override switch on a module or emergency override.</td>
</tr>
<tr>
<td>Fallback</td>
<td>(not applicable)</td>
</tr>
<tr>
<td>Override Expiration</td>
<td>When the override action is automatically set to "auto" upon expiration of the override period.</td>
</tr>
</tbody>
</table>
Flex Points

Datapoint Name
(C-Bus Numeric Writable)
(Maximum of 18 alphanumeric characters) assigned to a point for operator use in locating and commanding the point. Examples: Rmtempfl1 and FlotempG/fl. The technical address and the descriptor further define the point. This name must be unique within a controller. User addresses must include one non-digit character and cannot include Tabs, double quotes, ?, *, or space characters. All other ASCII characters are allowable (A-Z, 0-9, +, -, _, etc.). For example, 12A is a valid user address, but 12 is not.

Facets
Engineering units and state texts definition

Proxy Ext
The Proxy Extensions area shows standard Niagara functions. Only a few of them are used by C-Bus points and they are described in the following. For all unused Niagara properties, please refer to the detailed Niagara BACnet documentation.

Read Value
(read only) Last value read from the device, expressed in device facets.

Write Value
(read only) Applies if writable point only. Last value written, using device facets.

Facets
Engineering units and state texts definition

Proxy Ext
The Proxy Extensions area shows standard Niagara functions. Only a few of them are used by C-Bus points and they are described in the following. For all unused Niagara properties, please refer to the detailed Niagara BACnet documentation.

Read Value
(read only) Last value read from the device, expressed in device facets.
<table>
<thead>
<tr>
<th>Write Value</th>
<th>Applies if writable point only. Last value written, using device facets.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Config</th>
<th>Shows the CARE C-Bus datapoint properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle Count</td>
<td>Value of a counter that represents the number of times a point is commanded to active state. This attribute is read-only.</td>
</tr>
<tr>
<td>Technical Address</td>
<td>Internal six-digit number that defines and locates a point in the system. The technical address is composed of three pairs representing controller number (0-30), module number (1-16), and terminal number (1-12). Example: 010310 meaning Controller 1, Module 3, terminal 10. Operators use the User Address to refer to points.</td>
</tr>
<tr>
<td>No Response Flag</td>
<td>Shows whether the I/O module, the point is assigned to, communicates with the controller or not: communication is established = online communication is interrupted = not online</td>
</tr>
<tr>
<td>Runtime Counter</td>
<td>Counts the runtime hours</td>
</tr>
<tr>
<td>Operating Mode</td>
<td>Status of point: Auto or Manual</td>
</tr>
<tr>
<td>Service Interval</td>
<td>Presets the number of hours that the runtime counter uses.</td>
</tr>
<tr>
<td>Suppress Alarm</td>
<td>Whether or not software should suppress alarm messages for changes in Fixed Mode and exceeding the alarm and warning limits.</td>
</tr>
<tr>
<td>Hours since serviced</td>
<td>Shows the runtime hours since the last service</td>
</tr>
<tr>
<td>Alarm Status</td>
<td>Whether the point alarm condition is critical or not. Critical alarms display on the central PC when they occur. Noncritical alarms do not display; software only writes them to the alarm printer and alarm history file. Click to change from critical to non-critical and vice versa.</td>
</tr>
<tr>
<td>Descriptor</td>
<td>Supplemental point information (maximum of 32 characters). Each Excel Controller has a unique set of descriptors (64 for Ver. 1.2 Controllers; 255 for Ver 1.3 and greater Controllers) that can be assigned to its user</td>
</tr>
</tbody>
</table>
addresses to further describe them. Example: user address "Rmtempf1" can have a descriptor of "Heating circuit, West wing" to help define its location.

Unit
Engineering units with ID, unit, and format.

<table>
<thead>
<tr>
<th>Alarm Severity</th>
<th>Alarm type: critical or non-critical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out</td>
<td>Off (down) @ def</td>
</tr>
<tr>
<td>In1</td>
<td>-(null)</td>
</tr>
<tr>
<td>In2</td>
<td>-(null)</td>
</tr>
<tr>
<td>In3</td>
<td>-(null)</td>
</tr>
<tr>
<td>In4</td>
<td>-(null)</td>
</tr>
<tr>
<td>In5</td>
<td>-(null)</td>
</tr>
<tr>
<td>In6</td>
<td>-(null)</td>
</tr>
<tr>
<td>In7</td>
<td>-(null)</td>
</tr>
<tr>
<td>In8</td>
<td>-(null)</td>
</tr>
<tr>
<td>In9</td>
<td>-(null)</td>
</tr>
<tr>
<td>In10</td>
<td>-(null)</td>
</tr>
<tr>
<td>In11</td>
<td>-(null)</td>
</tr>
<tr>
<td>In12</td>
<td>-(null)</td>
</tr>
<tr>
<td>In13</td>
<td>-(null)</td>
</tr>
<tr>
<td>In14</td>
<td>-(null)</td>
</tr>
<tr>
<td>In15</td>
<td>-(null)</td>
</tr>
<tr>
<td>In16</td>
<td>-(null)</td>
</tr>
<tr>
<td>Fallback</td>
<td>-(null)</td>
</tr>
</tbody>
</table>

Override Expiration
null

Out
Current value of the point

In1 ... In16
Int1 .. In8 allow overriding the value manually. In1 shows the value if the point’s value is overridden via manual override switch on a module or emergency override.

Fallback
(not applicable)

Override Expiration
When the override action is automatically set to "auto" upon expiration of the override period.

Analog and Digital Flag Points

Analog and digital flags cannot and have not to be edited, except by entering a comment.
Upload Parameters and Add Them to Database

Purpose
To upload parameters from the controller and monitor particular parameters by changing them and writing them back into the controller.

IMPORTANT!
It is strongly recommended to import the parameter text file from CARE prior to the upload of parameters from the controller. If the parameter text file is not available prior to the discovery, the parameter descriptions are missing.

Procedure
1. In the Nav tree on the left, expand the Station folder and browse to the controller.
2. In the controller, right-click the Parameters folder, click Actions, and then click Import Parameter Txt File in the context menu.
3. In the File Chooser dialog box, navigate to the folder where the parameter txt file is located.
4. Select the file, and then click **Open** button.

5. On the right **Database** pane, click **Discover**.

RESULT: In the upper **Discovered** area, the parameter text files are displayed.

6. Select parameter text file(s) for adding them to the database. Multi-selection using the SHIFT or STRG key is possible.
7. Or, select particular parameters of a text file for adding them to the database. Multi-selection using the SHIFT of STRG key is possible.

8. Drag & drop the file/parameter to the Database area or click Add button at the bottom of the pane.

NOTE: It is also possible to add the parameter files to the database without the prior import of the parameter text file.
Change Parameter Value

Purpose
To change a value of a parameter and write it to the controller.

Procedure
1. In the Nav tree on the left, expand the Station folder and browse to the controller.
2. In the controller, expand the Parameters folder.
3. Right-click the parameter, then click Actions, and then click Set in the context menu.
4. In the Set dialog box, enter the value, and then click OK button.

5. To view the current parameter value, double-click the parameter in the Parameters folder. The value can be monitored in the Value field on the right pane displayed.

6. You can also change the value on this pane by clicking the double arrow right to the value field and entering the value in the field displayed. Write the value to the controller by clicking the Save button at the bottom.
Read Parameter Value

Purpose
To read the current parameter value from the controller.

Procedure
1. In the Nav tree on the left, expand the Station folder and browse to the controller.
2. In the controller, expand the Parameters folder.
3. To view the current parameter value, double-click the parameter in the Parameters folder. The value can be monitored in the Value field on the right pane displayed.
4. Right-click the parameter in the Parameters folder, then click Actions, and then click Read in the context menu.
5. The current value is displayed in the Value field on the right pane.
In the following, the viewing and editing of schedules are described.

There is no special import or export schedule procedure necessary. The refresh button of the schedule does force a read from controller and the save action does force a write to the controller. Last update wins.

Niagara HTML5 Scheduler

Niagara 4.4 supports HTML5 for its scheduler. Hence, no more JAVA plug-ins or updates to browsers are necessary in order to view C-bus schedules via the CentraLine supervisor.

In the workbench, the schedules can be viewed in HTML5 format by selecting the **CI Time Program View** in the **Views** drop-down menu and **Views** context menu respectively.

Introduction

General

Each time program includes:

- Daily schedules
- Weekly schedule
- Yearly schedule (optional)
- Holiday schedule (optional)

Each time program can be individually changed by:

- creating daily schedules with individual switch points
– assigning daily schedules to particular weekdays in the weekly schedule
– customizing yearly schedule by defining individual periods with special
daily schedules
– overriding default schedules on holidays with individual holiday schedule

IMPORTANT

Settings and changes made in daily schedules, weekly schedule and yearly
schedule do only apply to the allocated time program, not any other time
program(s).

View Time Program(s) – Description of Schedules Work Environment

Procedure

1. In the Nav tree on the left, expand the Station folder and browse to the controller.

2. In the controller, double-click the Schedules folder.

RESULT: On the right "Schedules" pane, the time programs of the current date are displayed.
Description of Schedules

Work Environment

In this section, the "Schedules" pane (as shown in the previous figure), is described.

At the top, you select the schedule to be displayed from the Time Program drop-down listbox.

If <All> is selected, all schedules are displayed in multiple columns on the Overview tab, except those schedules which have no datapoints assigned.

NOTE: You can edit only one schedule at the same time. Hence, If <All> is selected, the Daily Schedule, Weekly Schedule, Yearly Schedule and Holiday Schedule tabs are disabled and no schedule can be edited.
By clicking the calendar icon right to the Date field, you can select the date for which you want to display the schedules. The date will be selected in the Overview pop-up window.

By clicking the edit icon right to the Time Program drop-down listbox, you can define default settings for datapoints in the Edit Color Scheme dialog box.

After the time program selection in the Time Program drop-down listbox, the schedules are displayed on the following tabs.

- Overview
- Daily Schedule
- Weekly Schedule
- Yearly Schedule
- Holiday Schedule
The Overview tab gives an overview about the switch points of the selected time program. The Daily Schedule, Weekly Schedule, Yearly Schedule, and Holiday Schedule tabs are available for editing, adding, copying and deleting switch points of the selected time program.

NOTE: On the Overview tab, you cannot edit switch points.

The **Time Program** row shows the name of the selected time program.
The **Source** row shows the time program source as a link. The source can be any of the following:

- weekly program
- yearly program
- holiday program

Clicking the source link switches to the detailed view (tab) of the source time program.

The **Datapoint** row shows the datapoint names.

Switch Points Display

On the **Overview** tab, the switch points are displayed graphically in a 24-hour time line in the range of midnight through 11:59 P.M., each with the following properties:

- Start / end time
- Value
- Optimization status (On, Off)

The switch point status is indicated in color as follows:

- yellow = switch point value <> unoccupied value or occupied value
- orange = switch point value > occupied value
- blue = switch point value < unoccupied value
- red = today override
- red line = time between 2 switch points < 30 min
To scroll through the time scale, use the mouse wheel or the right-handed scrollbar.

Configure Display

On the daily and weekly schedule tabs, you can configure the display by displaying or hiding desired datapoints as follows:

1. Right-click anywhere inside the scrollable schedule table.
2. Click **Configure Display**.

 The **Configure Display** dialog box displays.
3. Set display options by checking/unchecking the **Hide** check boxes

4. Click **OK** to save settings.

Schedules Procedures

Schedules can be edited or deleted. New schedules can be created. After schedules have been customized according to your requirements, they can be saved in the controller. Schedules can also be uploaded by Refresh.

To edit switch points in any of the relevant schedules (daily schedules, weekly schedule, and yearly schedule), click the corresponding tab and perform desired actions as described in the subsequent sections.

To create/edit daily schedules, please refer to the “Daily Schedule” section.

To create/edit weekly schedule, please refer to the “Weekly Schedule” section.

To create/edit yearly schedule, please refer to the “Yearly Schedule” section.

To create/edit holiday schedule, please refer to the “Holiday Schedule” section.

Upload Schedules

Procedure

1. In the *Nav tree* on the left, expand the *Station* folder and browse to the controller.

2. In the controller, double-click the *Schedules* folder.

 RESULT: On the right "Schedules" pane, the time programs of the current date are displayed.
Download Schedules

Procedure

1. On the right "Schedules" pane (see "Upload Schedules" section), click the **Refresh** button at the bottom.

Edit Color Scheme

Purpose

This function allows defining default values for

- occupied and unoccupied states
- optimization property

Procedure

1. On the "Schedules" pane, click the edit icon right to the **Time Program** drop-down listbox.

 The **Edit Color Scheme** dialog displays.
In the **Schedule Name** field, the selected schedule is displayed. Under **Assigned Data Points**, all assigned datapoints are displayed with the following properties:

- **Data Point**
 Displays the name of the data point

- **Default Occupied Value**
 Select/enter the value for the occupied state of the data point

- **Default Unoccupied Value**
 Select/enter the value for the occupied state of the data point

- **Optimization**
 Check/uncheck optimization of the datapoint

- **Units**
 Displays the engineering unit of the datapoint

2. After finishing the settings, close the dialog by clicking the OK button.

- **Daily Schedule**

The switch points are displayed in the switch point table in a 24-hour time line in the range of midnight through 11:59 P.M, each with the following properties:

- Start time / end time
- Value for analog points or status for digital points
- Optimization status (On, Off)
The switch point status is indicated in color as follows:

- yellow = switch point value <> unoccupied value or occupied value
- orange = switch point value > occupied value
- blue = switch point value < unoccupied value
- red = today override
- red line = time between 2 switch points < 15 min

Start and end times can be changed graphically or via dialog-based editing. Values and optimization settings can only be changed via dialog-based editing. For detailed
information on the editing modes, please refer to the "Edit/Update Switch point" section.

To scroll through the time scale, use the mouse wheel or the right-handed scrollbar.

Right to the Daily Schedule drop-down listbox, the following functions are available via mouse-click on the corresponding button:

- Creates a new daily schedule
- Copies switch points between daily schedules
- Opens a daily schedule for editing
- Deletes a daily schedule

IMPORTANT

Settings and changes made in daily schedules, weekly schedule, yearly schedule, and holiday schedule do only apply to the allocated time program, not any other time program(s).

For daily schedules you can do the following:

- Edit daily schedule
- Create new daily schedule
- Delete daily schedule
- Edit (update) switch points
- Copy switch points from / to other daily schedule

For detailed information on all applicable daily schedules procedures, please refer to the subsequent sections.

Edit Daily Schedule

Purpose

This function allows changing the name of the daily schedule.

Procedure

1. In Time Program, select the time program.
2. In Date, select the date.
3. On the "Schedules" pane, click the Daily Schedule tab.
4. In Daily Schedule, select the daily schedule you want to edit.
5. Click **Edit daily schedule** icon. The *Edit Daily Schedule* dialog box displays.

![Edit Daily Schedule dialog box]

6. In **New Name**, change the name for the daily schedule.

![New Daily Schedule dialog box]

7. Click **OK**. The daily schedule’s name is updated.

8. Save settings by clicking the **Save** button at the bottom.

Create New Daily Schedule

<table>
<thead>
<tr>
<th>Purpose</th>
<th>This function allows creating a new daily schedule with or without switch points.</th>
</tr>
</thead>
</table>
| **Procedure** | 1. In **Time Program**, select the time program.
 2. In **Date**, select the date.
 3. On the "Schedules" pane, click the **Daily Schedule** tab.
 4. Click **New daily schedule** icon. The *New Daily Schedule* dialog box displays |

![New Daily Schedule dialog box]

5. In **Name**, change the default name according to your needs.
6. Select **Create Blank Daily Schedule** if you want the new daily schedule not to include any switch points initially.

7. Or, select **Copy From**, and then select an existing daily schedule if you want the new daily schedule to include the switch points from the existing daily schedule.

8. Click **OK**.

Delete Daily Schedule

Purpose

This function allows deleting a daily schedule from the time program.

Procedure

1. In **Time Program**, select the time program.

2. In **Date**, select the date.

3. On the "Schedules" pane, click the **Daily Schedule** tab.

4. In **Daily Schedule**, select the daily schedule you want to delete.

5. Click **Delete daily schedule** icon .

 The daily schedule is deleted.

6. Save settings by clicking the **Save** button at the bottom.

Edit / Update Switch Point

Purpose

This function allows editing a switch point’s

- value
- optimization status
- start and end times

Value

Values can be digital states (two or multiple), e.g. ON, OFF, AUTO or analog values e.g. temperature = 23 °C.

Optimization

The optimization function causes optimization of a switching point. It has two states, ON (checked) and OFF (unchecked). The optimization compensates the time an environment needs to reach a wanted condition (temperature, humidity, etc.) by bringing forward the switching point of the corresponding device.

NOTE: The optimization has only an effect if the user address of the device is suitable for optimization.

Example:

If the optimization is ON, a heating plant is switched on early in order to have your home at the required setpoint level by a particular time.
programmed switching point: 6:00 to 20 °C
real switching point: 4:52 to heating ON.

The difference between the programmed and real switching point is the estimated
time a room needs to warm up under the current conditions.

The switch point start and end time can be changed via dialog or graphically.

Start time / End time
Start and end times define the time range the switch point value is valid. If the start
time of one switch point overlaps with the end time of another preceding switch
point, the preceding point’s end time is adapted accordingly. If the end time of one
switch point overlaps with the start time of another succeeding switch point, the
succeeding point’s start time is adapted accordingly. If no end time is set for a
switch point when creating it, the end time is set to succeeding point’s start time. If
the end time of an existing switch point is disabled belatedly when updating it, all
succeeding points will be deleted and the updated switch point’s end time is
extended to 24:00.

Consistency Check
If two switch points that directly follow each other have the same value and
optimization settings, they will combined to one switch point where the start time will
be set to the start time of the first switch point and the end time will be set to the end
time of the second switch point.

If gaps remain between two switch points, then the previous switch point will be
extended to the switch point that follows. This correction will be done prior to the
download of the time program.

Save Time Program Changes
When leaving the time program function NX prompts you for saving/discard the
changes you have done during the session.

![View has been modified, save changes to "Schedules"?](image.png)

You can edit a switch point in two ways, either in a dialog via dialog-oriented editing
or graphically via graphic-oriented editing. The two methods are described in the
following.

2 Switch Point Editing Methods

Dialog-oriented switch point editing
This function allows the full change of all switch point settings as mentioned above,
that is, value (unoccupied, occupied states), start and end times, and optimization.

Procedure
1. In **Time Program**, select the time program.
2. In **Date**, select the date.
3. On the "Schedules" pane, click the **Daily Schedule** tab.
4. In **Daily Schedule**, select the daily schedule.
5. In the switch points table, double-click the switch point you want to edit.

The **Edit Switch Point** dialog box displays.
6. Do the following:

a. For analog points, enter the value in the unit displayed.
b. For digital points, select the state text.
c. In Start Time, enter the start time for the switch point.
d. In End Time, enter the end time for the switch point.
 NOTE: When checking the End Time check box (default setting), the end time of the switch point will be set to the end time defined here. When unchecking the End Time check box, the end time will be automatically set to the start time of the succeeding switch point.
e. Check/uncheck Optimization if you want to enable/disable optimization.
f. Click OK button.

7. Save settings by clicking the Save button at the bottom

Graphic-oriented switch point editing

This function allows the quick graphic change of start and end times of switch points. Value and optimization settings cannot be changed graphically (please use the Dialog-oriented switch point editing in this case).

To graphically change start or end time separately, do the following:

Example 1: Change of end time to earlier time than start time of succeeding point.

Procedure

1. Hover over the border representing the start or end time, you want to move. The cursor toggles to a two-arrow shape.

2. Click, and move the border to an earlier time, e.g. 8:30, and release the mouse button. The start time and end time of the succeeding point remains. Hence, a gap is created between the two switching points.
3. Save settings by clicking the Save button at the bottom

Example 2: Change of end time to later time than start time of succeeding point.

Procedure

1. Click, and move the border to a later time, e.g. 9:00, and release the mouse button. The start time of the directly succeeding point is adjusted accordingly and changed to the same end time of the currently selected point, that is, to 9:00. The end time of the succeeding point remains unchanged at 21:00.

NOTES: When moving the end time of the selected point to a later time than the end time of the succeeding point, the succeeding point will be deleted.

Moving the start time of a point follows the same rules and adapts the end time of a preceding point in the same way.

If a preceding or succeeding point does not directly follow the changed point (gaps), start or end time of those points are not adapted.

2. Save settings by clicking the Save button at the bottom

Example 3: Change of start time and end time simultaneously.

Procedure

To graphically change start and end time simultaneously do the following:

1. Click on the left bold border or anywhere inside the switch point. The cursor toggles to hand-shape.
2. With mouse button pressed, move the complete switch point to the desired time-scale position, and then release the mouse button. This function changes both start and end time to new values.

 NOTE: For the simultaneous change of start and end time, the adoption of start and end time of succeeding or preceding points follow the same rules as for changing the start or end time separately as described in the preceding section.

3. Save settings by clicking the **Save** button at the bottom

Create New Switch Point

Purpose
This function allows creating a new switch point.

NOTES: A new switch point can only be created on free space (rows) in the table. That is, to insert a new switch point between other switch points, you must firstly delete the existing switch point at the desired position (see "Delete Switch point" section).

Or, you must change the start and/or end times of the surrounding switch points to create free space.

After you created free space, apply the following procedure.

Procedure

1. In **Time Program**, select the time program.
2. In **Date**, select the date.
3. On the "Schedules" pane, click the Daily Schedule tab.
4. In **Daily Schedule**, select the daily schedule.
5. In the switch points table, click on the empty row where you want to create the switch point. The **Edit Switch Point** dialog box displays.
6. Define the values as described in the "Edit / Update Switch point" section.
7. Save settings by clicking the **Save** button at the bottom

Copy Switch Points From / To Other Daily Schedule

Purpose
This function allows copying switch points between daily schedules.

Procedure

1. In **Time Program**, select the time program.
2. In **Date**, select the date.

3. On the "Schedules" pane, click the **Daily Schedule** tab.

4. In **Daily Schedule**, select the daily schedule.

5. Click the **Copy switch points from / to other daily schedule** icon.

 The **Copy Switch Points from/to other daily**... dialog box displays.

![Copy Switch Points dialog box]

6. Do one of the following:

a. To copy switch points from another daily schedule to the selected daily schedule, select **Load Switchpoints From**, and then select the source schedule from which you want to copy the switch points from the drop-down listbox.

b. To copy switch points from the selected daily schedule to another daily schedule, select **Copy Switch Points To** and then select the target schedule to which you want to copy the current switch points.

7. Click **OK**.

8. Save settings by clicking the **Save** button at the bottom.

Edit Switch Points

Purpose
This function allows editing the switch points of a daily schedule for a datapoint.

Procedure
1. In **Time Program**, select the time program.
2. In **Date**, select the date.

3. On the "Schedules" pane, click the **Daily Schedule** tab.

4. In **Daily Schedule**, select the daily schedule you want to edit.

5. Right-click in the datapoint column, and then click **Edit Switch Points**.
The Edit Switch Points dialog box displays. On the upper area, the time program name and the daily schedule name are shown. In the table below all switch points of the selected data point are shown. You can change the following properties:

- Value
- Start Time
- End Time
- Optimization

You can also delete switch points by checking the points in the Delete column.

6. Edit the desired properties.
7. Click OK.

Delete Switch Point

Purpose
This function allows deleting a switch point.

Procedure
1. In Time Program, select the time program.
2. In Date, select the date.
3. On the "Schedules" pane, click the Daily Schedule tab.
4. In Daily Schedule, select the daily schedule.
5. In the switch points table, right-click the switch point, you want to delete.
6. In the context menu, click Delete. The switch point is deleted. Preceding and succeeding switch points remain as is and keep their end and start times.
7. Save settings by clicking the Save button at the bottom.
Create Today Override

Purpose
To override a daily program with a defined value for a particular time range.

Procedure
1. Select the **Overview** tab.

2. Right-click the daily program of the datapoint, and then click **Create Today Override** in the context menu.

3. In the **Create Today Override** dialog box, change any of the following settings:
 - Value
 - Time
 - Optimization
4. Save settings by clicking the OK button.
 The override period is indicated in red in the datapoint column.

 NOTE: If the Start time is defined in the past, the override will get active on the next day.

Edit Today Override

The today override can be edited. To do so, right-click on the red marked override period and then click **Edit Today Override** in the context menu. Edit the properties **Edit Today Override** dialog box as described in step 3.
Delete Today Override

The today override can be deleted. To do so, right-click on the red marked override period and then click **Delete Today Override** in the context menu.

![Delete Today Override](image)

Click **Yes** in the **Delete Today Override** dialog box.

The today override is deleted and the daily program is reverted to its original state.

Weekly Schedule

IMPORTANT

Settings and changes made in daily schedules, weekly schedule, yearly schedule, and holiday schedule do only apply to the allocated time program, not any other time program(s).

When selecting the **Weekly schedule** tab, the whole week is shown in table format. Each weekday’s settings can be edited by assigning the daily program to the weekday and setting the switch points per day. Switch points can be edited in the same way as in the daily schedule (see “Edit/Update Switch point” section).

Modify Weekly Schedule

Procedure

This function allows setting/changing the daily schedule assignment of particular week days and editing of the switch points of the daily schedules.

IMPORTANT

Changes on the Weekly Schedule applies only to the weekly schedule of the selected time program.

Procedure

1. In **Time Program**, select the time program.

2. In **Date**, select the date.

3. On the "Schedules" pane, click the **Weekly Schedule** tab. The whole week is shown in table format.

4. To assign a daily schedule to a weekday, select the daily schedule at the top below the weekday name.
The switch points of the selected daily schedule are displayed in the column.

To edit switch points, please refer to the “Edit/Update Switch point” and “Delete Switch point” sections.

NOTE: Editing a daily schedule in the weekly schedule will change all days using the same daily schedule correspondingly.

5. Save settings by clicking the **Save** button at the bottom.

Yearly Schedule

IMPORTANT

Settings and changes made in daily schedules, weekly schedule, yearly schedule, and holiday schedule do only apply to the allocated time program, not any other time program(s).

Daily schedules are assigned to each day of the week in the weekly schedule. The weekly schedule is automatically repeated every week and creates the normal yearly schedule.

The yearly schedule can be changed for a specific period by assigning different daily schedules to particular weekdays of the desired period.

Time Program: Standard				
Overview	**Daily Schedule**	**Weekly Schedule**	**Yearly Schedule**	**Holiday Schedule**
Start Date	20.1.2017	Week Range 1		

<table>
<thead>
<tr>
<th>Week Day</th>
<th>Date</th>
<th>Assigned Schedule</th>
<th>Source</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday</td>
<td>20.1.2017</td>
<td>Weekday</td>
<td>Weekly Schedule</td>
<td></td>
</tr>
<tr>
<td>Saturday</td>
<td>21.1.2017</td>
<td>Weekend</td>
<td>Weekly Schedule</td>
<td></td>
</tr>
<tr>
<td>Sunday</td>
<td>22.1.2017</td>
<td>Weekend</td>
<td>Weekly Schedule</td>
<td></td>
</tr>
<tr>
<td>Monday</td>
<td>23.1.2017</td>
<td>Weekend</td>
<td>Weekly Schedule</td>
<td></td>
</tr>
<tr>
<td>Tuesday</td>
<td>24.1.2017</td>
<td>Weekday</td>
<td>Weekly Schedule</td>
<td></td>
</tr>
<tr>
<td>Wednesday</td>
<td>25.1.2017</td>
<td>Weekday</td>
<td>Weekly Schedule</td>
<td></td>
</tr>
<tr>
<td>Thursday</td>
<td>26.1.2017</td>
<td>Weekday</td>
<td>Weekly Schedule</td>
<td></td>
</tr>
</tbody>
</table>

When selecting the **Yearly Schedule** tab, the yearly program settings are displayed for a defined week range. The weekdays show their assigned daily schedules and their source. Source shows the schedules where the assigned daily schedule is originally created, that is, either the weekly schedule or when assigning another daily schedule to a weekday here, the yearly schedule (override).

Modify Yearly Schedule

Purpose

This function allows setting up the schedule for specific days (period) of the year.

Procedure

1. In **Time Program**, select the time program.
2. In **Date**, select the date.
3. On the "Schedules" pane, click the Yearly Schedule tab. The yearly schedule is displayed.

4. Define the time range to be displayed as follows:
 a. In Start Date, click the calendar icon and select the date in the pop-up window.
 b. In Week Range, select the number of weeks.

 The week range is displayed below. The weekdays show their assigned daily schedules and their source. Source shows the schedules where the assigned daily schedule is originally created, that is, either the weekly schedule or when assigning another daily schedule to a weekday here (override), the yearly schedule.

5. To assign another daily schedule to a weekday, right-click on the weekday, and then click Assign Daily Schedule.
6. In the *Set Daily Schedule* dialog box, select the daily schedule. Multi-selection by pressing the STRG or SHIFT key simultaneously is possible.

7. Click **OK** button.

The assigned daily schedule is shown in the *Assigned Schedule* column. In the *Source* column, the overriding daily schedule is indicated by the entry "Yearly Schedule".

8. Save settings by clicking the **Save** button at the bottom.

To reverse an assignment to the default setting, right-click on the week day(s). Click **Assign Daily Schedule**, then select "Unassigned" in the *Set Daily Schedule* dialog box, and then click **OK** button.

The original daily program is re-assigned as indicated in the *Assigned Schedule* and *Source* columns.

Holiday Schedule

The holiday schedule is a customized calendar containing the popular bank holidays. By default, each holiday has the daily schedule of the weekly schedule assigned. You can change the default assignment by assigning another daily schedule in the holiday schedule. This will override the default assignment. The changes can be viewed in the yearly schedule.

IMPORTANT

Settings and changes made in daily schedules, weekly schedule, yearly schedule, and holiday schedule do only apply to the allocated time program, not any other time program(s).

Modify Holiday Schedule

Purpose

This function allows setting up the schedule for holidays.

Procedure

1. In **Time Program**, select the time program.
2. In **Date**, select the date.
3. On the "Schedules" pane, click the Holiday Schedule tab. The yearly schedule is displayed.

4. To display and apply the holiday schedule, check Enable Holiday Schedule if not already done.

5. In the Daily Override column of the desired holiday, select the daily program which should override the default assignment of the weekly program, indicated as ‘Unassigned’.

The selected daily schedule is displayed in the row here and can also be viewed in the yearly schedule.

6. Save settings by clicking the Save button at the bottom.
Download Time Program

Purpose
This function downloads (writes) the time programs into the controller.

Procedure
1. To download the time programs into the controller, click the button at the bottom.

Upload Time Program

Purpose
If changes of time programs in the controller have occurred, or if any local modifications have been discarded, this function reloads (reads) the current time programs from the controller. Upload is also possible by double-clicking the Schedules folder in the Nav tree.

Procedure
1. To upload the time programs into the controller, click the button at the bottom. If you changed the time program, the *Discard changes* dialog box displays.

 ![Discard changes dialog box]

 2. Click **Yes** to discard the changes or click **No** to keep the changes. The time program is updated.
C-Bus alarms can be categorized as follows:

- **system alarms**
 Operating errors that occur in a control unit or during communication with other Excel controllers are recognized and displayed. These alarm signals can relate, for example, to a defective module, the need to change the buffer battery (data protection), or the presence of one digital output module too many (maximum 10). These alarm signal texts are preprogrammed. They are always critical alarms.

- **critical alarms**
 Have priority over non-critical alarms, that is, critical alarms are given priority on the bus when several alarms are in the alarm queue.

- **non-critical Alarms**

The following events all generate alarm messages:
- Exceeding limit values
- Overdue maintenance work
- Totalizer readings
- Digital datapoint changes of state

<table>
<thead>
<tr>
<th>attribute</th>
<th>always critical</th>
<th>optional critical or non-critical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Mode</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Min. Limit</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MNX. Limit</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Maintenance Alarm</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Interval Counter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alarm Status</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Changing over the attribute "Operating Mode" always results in a critical alarm, but the attribute "Alarm Type" offers a choice for the alarm attributes "Min. Limit", "MNX. Limit", "Maintenance Alarm", "Totalizer", and "Alarm Status" whether an alarm is classified as critical or non-critical. Distinguishing between critical and non-critical alarms is significant for the subsequent reporting of the alarms. When the type of alarm for a datapoint has been decided, e.g. "critical" alarm type, it refers to all alarm attributes for this datapoint.

In the Nav tree of the controller, the source of the alarms can be accessed in the following folders:

- Sys Alarms
- Critical Alarms
- Non Critical Alarms

By double-clicking on the corresponding folder, you can view the properties of the alarm category on the right pane.
By double-clicking the AlarmService folder you can view the wire sheet. Here you can create the corresponding alarm classes. This allows alarm segregation.

Alarm classes and console recipients can be found in the palette **Alarm**.

You can assign these alarm classes to the existing CL BACnet console recipient or you can create a new console recipient for the C-Bus. In the following figures the assignment steps of the alarm classes to the C-Bus console recipient is shown.
NOTE: You can create multiple console recipients (one for each alarm category such as system alarms)

Procedure

1. In the *Alarm* palette, open the *AlarmService* folder, and then drag&drop the Default Alarm Class onto the wiresheet.

2. In the *Name* dialog box, enter the alarm class name, e.g. system alarms, and then click *OK*.

The alarm class is added to wiresheet.

3. Create alarm classes for ‘critical alarms’ and ‘non-critical alarms’ in the same way.
4. In the Alarm palette, open the Recipients folder, and then drag&drop the console recipient onto the wiresheet.

5. In the Name dialog box, enter a name for the C-Bus alarm recipient, and then click OK.

6. Connect the alarm classes to the console recipient.
7. If desired, create a console recipient for each alarm class and connect them to each other.

“HOW TO” INSTRUCTIONS

For the C-Bus driver, the following additional features are available

- Emergency Actions Always Hidden
- C-Bus Point Updater Tool

The corresponding detailed information is included in “How to” Instructions which can be downloaded from the CentraLine FAQ database at:

https://clfaq.ge51.honeywell.de/
set datapoint into, 41

B

BNA
IP address, 20
Broadcast hysteresis
global analog point, 83
Bus performance, 7
Bus performance and subscriptions, 7

C

C-Bus licenses, 7
point handling, 7
C-Bus channel configuration, 20, 21
C-Bus controllers disable time synchronization, 22
time synchronization, 22
C-Bus network create, 18
ping, 22
CentraLine NX versions on same PC, 8
Change of state alarm
digital input point, 63
digital value point, 77
Characteristic analog input point, 54
analog output point, 58
CLIF IP address, 20
CLIF configurator tool download, 7
Color scheme edit, 110
Configuration analog input point, 52
analog output point, 58
analog value point, 72
C-Bus channel, 20, 21
digital input point, 61
digital output point, 67
digital value point, 76
flex point, 94
global analog point, 82
global digital point, 85
pseudo totalizer point, 91
totalizer point, 88
Configure display of time programs, 108
Connect station, 15
Contact type digital input point, 63
digital output point, 68
Controller add objects to station, 26
discover objects, 26
ping, 26
Copy station, 13
switchpoint, 119
Create C-Bus network, 18
daily schedule, 114
station, 11
switchpoint, 119
today override, 122
Cycle count
digital input point, 63
digital output point, 67
digital value point, 77
flex point, 94

D

Daily schedule, 111
copy switchpoint, 119
create, 114
create switchpoint, 119
create today override, 122
delete, 115
delete today override, 124
edit, 113
edit datapoints, 113, 116, 121
edit switchpoint, 115, 120
edit today override, 123
Datapoint auto mode, 41
daily schedule, 113, 116, 121
manual override, 38
read attributes, 48
set from override into Auto mode, 41
set into emergency auto, 44
set into emergency override, 43
set into manual mode, 38
Datapoint properties modify, 31
modify procedure, 37
view, 31
Datapoint properties descriptions, 52
Datapoint value set, 46
Datapoint values modify, 31
Delete daily schedule, 115
today override, 124
Delta counter values pseudo totalizer point, 91
totalizer point, 88
Description time programs, 103
Descriptor analog input point, 53
analog output point, 58
analog value point, 72
digital input point, 62
digital output point, 67
digital value point, 76
flex point, 95
global analog point, 82
global digital point, 85
pseudo totalizer point, 91
totalizer point, 88
Different CentraLine NX versions on same PC, 8
Digital input point active state, 63
alarm delay, 63
alarm severity, 63
alarm status, 63
alarm text, 63
change of state alarm, 63
configuration, 61
contact type, 63
descriptor, 62
engineering unit, 62
facets, 61
fallback, 64
hours since serviced, 63
last change, 62
LED mode, 64
min active time, 64
min inactive time, 64
min inactive time on start, 65
operating mode (auto, manual), 62
out, 64
override expiration, 64
proxy extension, 61
runtime enabled, 62
service interval, 62
suppress alarm, 63
technical address, 62
trend logging, 63
user address, 61
Digital output point
active state, 68
alarm severity, 68
configuration, 67
contact type, 68
cycle count, 67
descriptor, 67
facets, 66
fallback, 69
hours since serviced, 67
last change, 67
min active time, 69
min inactive time on start, 70
no response flag, 68
operating mode (auto, manual), 67
out, 69
override expiration, 69
override status flag, 68
proxy extension, 66
runtime counter, 67
runtime enabled, 67
safety position, 68
select engineering unit, 67
set service interval, 67
suppress alarm, 68
user address, 66
Digital value point
active state, 77
alarm severity, 77
alarm status, 77
change of state alarm, 77
configuration, 76
descriptor, 76
enable runtime, 77
equipment unit, 76
facets, 75
fallback, 78
highest point value, 76
hours since serviced, 77
no response flag, 77
operating mode (auto, manual), 76
out, 78
override expiration, 78
proxy extension, 75
runtime counter, 76
service interval, 76
suppress alarm, 77
trend logging, 77
user address, 75
Discover
goals of controller, 26
Display
global point attributes, 79
Download
schedules, 110
time program, 129
Download
time programs, 110
E
Edit
color scheme, 110
datapoints, 116, 121
datapoints (daily schedule), 113
switchpoint, 120
today override, 123
Emergency auto
set datapoint into..., 44
Emergency override
set datapoint into..., 43
Enable runtime
digital value point, 77
Engineering unit
analog input point, 54
analog output point, 58
analog value point, 53
digital input point, 62
digital output point, 67
digital value point, 76
flex point, 95
global analog point, 82
global digital point, 95
pseudo totalizer point, 91
totalizer point, 88
F
Facets
analog input point, 52
analog output point, 57
analog value point, 71
digital input point, 61
digital output point, 66
digital value point, 75
flex point, 93
global analog point, 81
global digital point, 94
pseudo totalizer point, 90
totalizer point, 87
Fallback
analog input point, 56
analog output point, 60
analog value point, 74
digital input point, 64
digital output point, 69
digital value point, 78
flex point, 95
global analog point, 84
global digital point, 86
pseudo totalizer point, 92
totalizer point, 89
Flex point
alarm severity, 95
alarm status, 94
configuration, 94
descriptor, 95
equipment unit, 95
facets, 93
fallback, 95
hours since serviced, 94
no response flag, 94
operating mode (auto, manual), 94
out, 95
override expiration, 95
proxy extension, 93
service interval, 94
suppress alarm, 94
technical address, 94
user address, 93

G

Global analog point
broadcast hysteresis, 83
configuration, 82
descriptor, 82
engineering unit, 82
facets, 81
fallback, 84
no response flag, 83
operating mode (auto, manual), 82
out, 83
override expiration, 84
proxy extension, 81
trend cycle counter, 82
trend hysteresis, 82
user address, 81

Global digital point
active state, 85
configuration, 85
descriptor, 85
engineering unit, 85
facets, 84
fallback, 86
highest point value, 85
no response flag, 85
operating mode (auto, manual), 85
out, 86
override expiration, 86
proxy extension, 84
user address, 84

Global points
display attributes, 79
modify attributes, 79

H

High alarm limit
analog input point, 53
analog value point, 72

High warning limit
analog input point, 53
for analog input point, 53

Highest point value
digital value point, 76
global digital point, 85

Holiday schedule
modify, 127

Hours since serviced
digital input point, 63
digital output point, 67
digital value point, 77
flex point, 94

I

Import
parameter text file, 96
Installation, 7

Interval counter
pseudo totalizer point, 91
totalizer point, 88

IP address
BNA, 20
CLIF, 20

L

Last change
analog input point, 53
analog value point, 72
digital input point, 62
digital output point, 67
pseudo totalizer point, 91

LED mode
digital input point, 64

Licenses
C-Bus, 7
point handling, 7

Low alarm limit
analog input point, 53
analog value point, 72

Low warning limit
analog input point, 53
analog value point, 72

M

Manual mode
set datapoint into, 38
Manual override
datapoint, 38

Min active time
digital input point, 64
digital output point, 69

Min inactive time
digital input point, 64
Min inactive time on start
digital input point, 65
digital output point, 70

Modify
datapoint properties, 31, 37
datapoint values, 31
global point attributes, 79
holiday schedule, 127
parameter value, 99
present value, 32
weekly schedule, 124
yearly schedule, 125

N

Niagara
system requirements, 7

No response flag
analog input point, 55
analog output point, 59
analog value point, 74
digital input point, 63
digital output point, 68
digital value point, 77
flex point, 94
global analog point, 83
global digital point, 85
totalizer point, 89
Objects of controller
add to station, 26
discover, 26
Open
platform, 9
Operating mode (auto, manual)
analog input point, 53
analog output point, 58
analog value point, 72
digital input point, 62
digital output point, 67
digital value point, 76
flex point, 94
global analog point, 82
global digital point, 85
pseudo totalizer point, 91
totalizer point, 88
Out
analog input point, 55
analog output point, 60
analog value point, 74
digital input point, 64
digital output point, 69
digital value point, 78
flex point, 95
global analog point, 83
global digital point, 86
pseudo totalizer point, 92
totalizer point, 89
Override expiration
analog input point, 56
analog output point, 60
analog value point, 74
digital input point, 64
digital output point, 69
digital value point, 78
flex point, 95
global analog point, 84
global digital point, 86
pseudo totalizer point, 92
totalizer point, 89
Override status flag
analog output point, 59
digital output point, 68

Parameter
modify value, 99
read value, 101
text file import, 96
Parameter value
read, 101
Parameters, 96
add to database, 96
upload, 96
Ping
C-Bus network, 22
controller, 26
Platform
open, 9
Point handling
C-Bus, 7
licenses, 7
Point handling and application change, 48
Present value
modify, 32
Proxy extension
analog input point, 52
analog output point, 57
analog value point, 71
digital input point, 61
digital output point, 66
digital value point, 75
flex point, 93
global analog point, 81
global digital point, 84
pseudo totalizer point, 90
totalizer point, 87
Pseudo totalizer point
alarm severity, 91
configuration, 91
delta counter values, 91
descriptor, 91
engineering unit, 91
facets, 90
fallback, 92
interval counter, 91
last change, 91
operating mode (auto, manual), 91
out, 92
override expiration, 92
proxy extension, 90
scaling factor, 91
suppress alarm, 91
technical address, 91
trend logging, 91
user address, 90
Read
datapoint attributes, 48
Runtime counter
digital input point, 62
digital output point, 67
digital value point, 76
flex point, 94
Runtime enabled
digital input point, 62
digital output point, 67
Schedules, 102
daily, 111
download, 110
edit color scheme, 110
holiday, 127
procedures, 109
upload, 109
yearly, 125
Sensor offset
analog input point, 54
Service interval
digital input point, 62
digital output point, 67
digital value point, 76
for flex point, 94
Set
datapoint value, 46
Start
CentraLine NX, 8
station, 15
Station
add controller to..., 23
add objects of controller to..., 26
connect, 15
copy, 13
create, 11
discover objects of controller, 26
start, 15
Subscriptions, 7
Subscriptions and bus performance, 7
Suppress alarm
analog input point, 54
analog output point, 58
analog value point, 73
digital input point, 63
digital output point, 68
digital value point, 77
flex point, 94
Pseudo totalizer point, 91
Totalizer point, 88
Switch points
display, 107
Switchpoint
copy to another daily schedule, 119
create, 119
edit, 115, 120
System requirements
Niagara, 7

T
Technical address
analog input point, 53
analog output point, 58
analog value point, 72
digital input point, 62
digital output point, 67
digital value point, 76
flex point, 94
global analog point, 82
global digital point, 85
pseudo totalizer point, 91
totalizer point, 88
Technical address for analog output point, 58
Time program
daily schedule, 111
download, 129
upload, 129
weekly schedule, 124
yearly schedule, 125
Time programs
configure display, 108
description, 103
download, 110
edit color scheme, 110
schedules procedures, 109
switch points display, 107
upload, 109
view, 103
work environment, 103
Time synchronization
C-Bus controllers, 22
disable, 22
Time to close
analog output point, 58
Time to open
analog output point, 58
Today override
create, 122
delete, 124
edit, 123
Totalizer point
alarm severity, 88
configuration, 88
delta counter values, 88
descriptor, 88
engineering unit, 88
facets, 87
fallback, 89
interval counter, 88
no response flag, 89
operating mode (auto, manual), 88
out, 89
override expiration, 89
proxy extension, 87
scaling factor, 88
suppress alarm, 88
technical address, 88
trend logging, 88
user address, 87
Trend cycle counter
analog input point, 55
analog output point, 59
analog value point, 74
global analog point, 82
Trend hysteresis
analog input point, 54
analog output point, 59
analog value point, 73
global analog point, 82
Trend logging
analog input point, 55
analog output point, 59
analog value point, 73
global analog point, 82
Trend totalizer point
alarm severity, 88
configuration, 88
delta counter values, 88
descriptor, 88
engineering unit, 88
facets, 87
fallback, 89
interval counter, 88
no response flag, 89
operating mode (auto, manual), 88
out, 89
override expiration, 89
proxy extension, 87
scaling factor, 88
suppress alarm, 88
technical address, 88
trend logging, 88
user address, 87
Trend totalizer point
alarm severity, 88
configuration, 88
delta counter values, 88
descriptor, 88
engineering unit, 88
facets, 87
fallback, 89
interval counter, 88
no response flag, 89
operating mode (auto, manual), 88
out, 89
override expiration, 89
proxy extension, 87
scaling factor, 88
suppress alarm, 88
technical address, 88
trend logging, 88
user address, 87

U
Upload
parameters, 96
schedules, 109
time program, 129
time programs, 109
User address
analog input point, 52
analog output point, 57
analog value point, 71
digital input point, 61
digital output point, 66
digital value point, 75
flex point, 93
global analog point, 81
global digital point, 84
pseudo totalizer point, 90
totalizer point, 87
User address
analog input point, 52
analog output point, 57
analog value point, 71
digital input point, 61
digital output point, 66
digital value point, 75
flex point, 93
global analog point, 81
global digital point, 84
pseudo totalizer point, 90
totalizer point, 87

V
Value
parameter, 101
View
datapoint properties, 31
time programs, 103

Weekly schedule
modify, 124
Work environment
time programs, 103

Yearly schedule, 125
modify, 125